cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A223570 Number of n X n 0..2 arrays with antidiagonals unimodal.

Original entry on oeis.org

3, 81, 16038, 16230456, 64207683936, 817235401137408, 28907250609032395776, 2535541672670058530700288, 503424192483622111094950081536, 209983768351036102380925723459562496
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Diagonal of A223576

Examples

			Some solutions for n=3
..1..0..2....0..2..1....2..1..2....1..0..2....0..0..0....1..2..0....0..0..0
..1..1..2....1..1..1....2..2..0....1..0..1....0..1..0....0..1..0....1..0..2
..1..1..0....0..0..0....2..1..1....0..1..2....1..1..1....2..0..0....0..0..0
		

Formula

Let U(z) = (z^4+6*z^3+23*z^2+18*z+24)/24
a(n) = U(n) * product{ U(i)^2 , i=1..(n-1) }

A223571 Number of nX3 0..2 arrays with antidiagonals unimodal.

Original entry on oeis.org

27, 729, 16038, 352836, 7762392, 170772624, 3756997728, 82653950016, 1818386900352, 40004511807744, 880099259770368, 19362183714948096, 425968041728858112, 9371296918034878464, 206168532196767326208
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Column 3 of A223576

Examples

			Some solutions for n=3
..1..2..1....1..2..2....0..1..0....0..1..0....0..2..0....2..0..0....2..1..0
..2..1..1....0..2..2....0..1..2....1..1..2....1..0..2....1..1..1....2..0..2
..2..0..0....2..1..0....1..2..1....2..2..1....1..0..0....1..1..0....1..2..2
		

Formula

Let U(z) = (z^4+6*z^3+23*z^2+18*z+24)/24
a(n) = U(min(n,3))^(max(n,3)-min(n,3)+1) * product{ U(i)^2 , i=1..(min(n,3)-1) }
a(n) = 22*a(n-1) for n>2

A223572 Number of nX4 0..2 arrays with antidiagonals unimodal.

Original entry on oeis.org

81, 6561, 352836, 16230456, 746600976, 34343644896, 1579807665216, 72671152599936, 3342873019597056, 153772158901464576, 7073519309467370496, 325381888235499042816, 14967566858832955969536, 688508075506315974598656
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Column 4 of A223576

Examples

			Some solutions for n=3
..0..2..2..2....0..2..2..0....0..2..0..1....0..1..1..0....0..1..1..0
..1..0..2..2....1..1..0..1....1..0..2..0....2..0..0..1....1..1..2..0
..0..2..0..0....0..1..2..2....2..0..1..1....0..0..2..2....2..2..2..1
		

Formula

Let U(z) = (z^4+6*z^3+23*z^2+18*z+24)/24
a(n) = U(min(n,4))^(max(n,4)-min(n,4)+1) * product{ U(i)^2 , i=1..(min(n,4)-1) }
a(n) = 46*a(n-1) for n>3

A223573 Number of nX5 0..2 arrays with antidiagonals unimodal.

Original entry on oeis.org

243, 59049, 7762392, 746600976, 64207683936, 5521860818496, 474880030390656, 40839682613596416, 3512212704769291776, 302050292610159092736, 25976325164473681975296, 2233963964144736649875456
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Column 5 of A223576

Examples

			Some solutions for n=3
..0..0..1..2..1....0..0..0..1..1....0..0..0..1..2....0..0..2..1..0
..0..2..1..1..1....0..1..2..0..0....0..0..0..2..2....0..2..1..0..0
..0..0..1..0..2....0..2..0..2..1....0..0..1..2..2....0..0..2..1..1
		

Formula

Let U(z) = (z^4+6*z^3+23*z^2+18*z+24)/24
a(n) = U(min(n,5))^(max(n,5)-min(n,5)+1) * product{ U(i)^2 , i=1..(min(n,5)-1) }
a(n) = 86*a(n-1) for n>4

A223574 Number of nX6 0..2 arrays with antidiagonals unimodal.

Original entry on oeis.org

729, 531441, 170772624, 34343644896, 5521860818496, 817235401137408, 120950839368336384, 17900724226513784832, 2649307185524040155136, 392097463457557942960128, 58030424591718575558098944
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Column 6 of A223576

Examples

			Some solutions for n=3
..0..0..0..2..0..2....0..0..0..0..2..0....0..0..0..0..2..2....0..0..0..0..0..0
..0..0..0..0..2..2....0..0..0..2..2..2....0..0..1..1..2..2....0..0..1..0..1..1
..0..0..1..2..1..2....0..0..2..2..1..2....0..0..1..1..1..2....0..0..1..1..0..2
		

Formula

Let U(z) = (z^4+6*z^3+23*z^2+18*z+24)/24
a(n) = U(min(n,6))^(max(n,6)-min(n,6)+1) * product{ U(i)^2 , i=1..(min(n,6)-1) }
a(n) = 148*a(n-1) for n>5

A223575 Number of nX7 0..2 arrays with antidiagonals unimodal.

Original entry on oeis.org

2187, 4782969, 3756997728, 1579807665216, 474880030390656, 120950839368336384, 28907250609032395776, 6908832895558742590464, 1651211062038539479120896, 394639443827210935509894144
Offset: 1

Views

Author

R. H. Hardin Mar 22 2013

Keywords

Comments

Column 7 of A223576

Examples

			Some solutions for n=3
..0..0..0..0..2..1..0....0..0..0..1..1..1..0....0..0..0..0..0..0..1
..0..0..1..0..0..1..1....0..0..0..0..1..2..2....0..0..0..0..1..2..0
..0..0..0..0..1..0..0....0..0..0..1..1..2..1....0..0..0..0..0..2..2
		

Formula

Let U(z) = (z^4+6*z^3+23*z^2+18*z+24)/24
a(n) = U(min(n,7))^(max(n,7)-min(n,7)+1) * product{ U(i)^2 , i=1..(min(n,7)-1) }
a(n) = 239*a(n-1) for n>6
Showing 1-6 of 6 results.