cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223594 Petersen graph (8,2) coloring a rectangular array: number of n X 3 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

144, 1504, 16192, 176224, 1931968, 21308000, 236213312, 2629972704, 29389265856, 329426847840, 3702023397952, 41690675717344, 470324275582912, 5313486488316000, 60099803562912832, 680431871048616672
Offset: 1

Views

Author

R. H. Hardin, Mar 23 2013

Keywords

Comments

Column 3 of A223599.

Examples

			Some solutions for n=3:
..4..5..4....9..1..9....2.10..8....5..6..5....9.15..9....5.13..5....8.10.12
..4..5..4....0..1..2....8.10..8....5..4..5...13.11..9...11.13..5....2.10..2
..4..5..4....0..1..9....8.14..8....3..4..3...13.15..9...15.13..5....2.10.12
		

Crossrefs

Cf. A223599.

Formula

Empirical: a(n) = 23*a(n-1) - 153*a(n-2) + 217*a(n-3) + 258*a(n-4) - 456*a(n-5) - 104*a(n-6) + 192*a(n-7).
Empirical g.f.: 16*x*(9 - 113*x + 227*x^2 + 167*x^3 - 458*x^4 - 64*x^5 + 192*x^6) / (1 - 23*x + 153*x^2 - 217*x^3 - 258*x^4 + 456*x^5 + 104*x^6 - 192*x^7). - Colin Barker, Aug 21 2018