A223595 Petersen graph (8,2) coloring a rectangular array: number of nX4 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.
432, 6736, 122608, 2372080, 47659632, 982848688, 20631729648, 438231627440, 9379905920496, 201754894742320, 4353130535839216, 94109174401819824, 2037032269494019568, 44126508340010479152, 956337724569802746864
Offset: 1
Keywords
Examples
Some solutions for n=3 .10.12.10.12...13.15.13..5...10..8.14.12....2..3..2.10...13.15..9.15 .10..8.14..8....9.11.13..5...10..8.14.12...11..3..2..3....9.11..9..1 .10..8.10.12....9.11.13.15....0..8.14..6....2..3..2.10...13.15..9..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 45*a(n-1) -639*a(n-2) +2781*a(n-3) +4328*a(n-4) -42674*a(n-5) +32672*a(n-6) +131496*a(n-7) -190080*a(n-8) +31104*a(n-9)
Comments