A223602 Petersen graph (8,2) coloring a rectangular array: number of 4Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph.
65536, 7424, 176224, 2372080, 43725920, 755683024, 13959069888, 258174966416, 4850832343904, 91505981537072, 1733729781877920, 32909491571349680, 625534833011886880, 11898376530083012208, 226422016143905134464
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..8..0....1..2.10....8.14..8....8.14..8....8.10..8....8..0..1....5..4..3 ..0..1..0....1..2..3....8..0..8....8.10..8...12.14..8....7..0..8....3..4..3 ..0..1..0...10..2..3....7..0..7....8..0..8....6.14..6....7..0..8....5..4..5 ..9..1..2....1..2..1....7..0..8....8..0..8...12.14.12....1..0..7....5.13..5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 22*a(n-1) +146*a(n-2) -4241*a(n-3) -7021*a(n-4) +296069*a(n-5) +84524*a(n-6) -10098300*a(n-7) +2841988*a(n-8) +193753372*a(n-9) -109915280*a(n-10) -2243896688*a(n-11) +1623516032*a(n-12) +16219469440*a(n-13) -13091056384*a(n-14) -74162963712*a(n-15) +62602426368*a(n-16) +215343361024*a(n-17) -182965936128*a(n-18) -395412119552*a(n-19) +329698951168*a(n-20) +450438201344*a(n-21) -361766191104*a(n-22) -303199682560*a(n-23) +230835617792*a(n-24) +107843944448*a(n-25) -76487327744*a(n-26) -15032385536*a(n-27) +9663676416*a(n-28) for n>29
Comments