A223615 Number of n X 3 0..1 arrays with rows and columns unimodal.
7, 49, 240, 876, 2582, 6504, 14547, 29659, 56161, 100123, 169786, 276030, 432888, 658106, 973749, 1406853, 1990123, 2762677, 3770836, 5068960, 6720330, 8798076, 11386151, 14580351, 18489381, 23235967, 28958014, 35809810, 43963276, 53609262
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1....0..0..1....1..0..0....0..0..1....0..1..0....0..0..0....0..1..1 ..0..1..1....0..1..1....1..1..1....0..0..1....0..1..1....1..0..0....0..1..0 ..1..1..1....0..0..1....1..1..0....0..1..0....0..0..1....1..0..0....0..0..0 ..1..1..1....0..0..1....0..1..0....0..1..0....0..0..0....1..1..0....1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223620.
Formula
Empirical: a(n) = (23/360)*n^6 + (31/120)*n^5 + (8/9)*n^4 + (31/24)*n^3 + (737/360)*n^2 + (29/20)*n + 1.
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: x*(7 + 44*x^2 - 20*x^3 + 20*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments