A223616 Number of n X 4 0..1 arrays with rows and columns unimodal.
11, 121, 876, 4466, 17594, 57238, 160883, 403159, 921181, 1951247, 3879910, 7312800, 13164932, 22776596, 38059285, 61676477, 97264447, 149698645, 225411536, 332768158, 482506014, 688246274, 967083623, 1340262451, 1833947441
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..0....0..0..1..1....1..0..0..0....1..0..0..0....0..0..1..0 ..1..1..1..1....0..1..1..1....0..0..0..0....1..1..1..0....0..0..1..1 ..1..1..1..0....0..0..1..0....0..0..1..0....0..0..0..0....0..1..1..1 ..0..0..1..0....0..0..1..0....0..0..0..1....0..0..0..0....0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223620.
Formula
Empirical: a(n) = (1/112)*n^8 + (79/1260)*n^7 + (59/180)*n^6 + (299/360)*n^5 + (259/144)*n^4 + (821/360)*n^3 + (7219/2520)*n^2 + (767/420)*n + 1.
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: x*(11 + 22*x + 183*x^2 + 14*x^3 + 158*x^4 - 56*x^5 + 35*x^6 - 8*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
Comments