cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223618 Number of nX6 0..1 arrays with rows and columns unimodal.

Original entry on oeis.org

22, 484, 6504, 57238, 367216, 1856100, 7795951, 28248007, 90732638, 263650284, 703980614, 1748547620, 4079672416, 9012596316, 18975151965, 38281575869, 74344179766, 139521245076, 253869738212, 449160402594, 774624001120
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Column 6 of A223620

Examples

			Some solutions for n=4
..1..1..0..0..0..0....0..0..1..0..0..0....0..0..1..1..1..1....1..1..1..1..1..1
..0..1..0..0..0..0....0..0..0..1..0..0....0..0..1..1..1..1....1..1..1..1..1..1
..0..0..1..0..0..0....0..0..0..1..1..0....0..0..0..1..1..1....0..0..0..1..1..1
..0..0..1..1..0..0....1..1..0..0..0..0....0..0..0..0..1..1....0..0..0..1..1..1
		

Formula

Empirical: a(n) = (271/5443200)*n^12 + (2327/3326400)*n^11 + (39107/5443200)*n^10 + (1579/36288)*n^9 + (52553/259200)*n^8 + (192371/302400)*n^7 + (8636441/5443200)*n^6 + (56113/20160)*n^5 + (2901677/680400)*n^4 + (523927/113400)*n^3 + (23969/5400)*n^2 + (33487/13860)*n + 1