A223632 Number of n X 3 0..1 arrays with rows, antidiagonals and columns unimodal.
7, 49, 229, 801, 2297, 5699, 12657, 25753, 48811, 87253, 148501, 242425, 381837, 583031, 866369, 1256913, 1785103, 2487481, 3407461, 4596145, 6113185, 8027691, 10419185, 13378601, 17009331, 21428317, 26767189, 33173449, 40811701, 49864927
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1....1..1..0....0..0..0....1..1..0....0..1..0....0..1..0....1..1..0 ..1..0..0....0..1..1....0..0..0....1..1..0....1..1..0....0..1..1....0..1..0 ..0..1..0....0..1..0....1..0..0....1..1..0....0..0..1....1..1..1....0..0..0 ..0..1..0....0..1..0....1..1..1....1..1..0....0..0..1....1..1..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223637.
Formula
Empirical: a(n) = (23/360)*n^6 + (11/120)*n^5 + (91/72)*n^4 + (11/8)*n^3 + (301/180)*n^2 + (23/15)*n + 1.
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: x*(7 + 33*x^2 - 18*x^3 + 29*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments