cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223635 Number of nX6 0..1 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

22, 484, 5699, 42109, 230619, 1026377, 3907140, 13135511, 39889555, 111242770, 288488044, 702553878, 1619299148, 3555008655, 7473337157, 15110365462, 29495673113, 55765989646, 102405932407, 183099750019, 319441371676
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Column 6 of A223637

Examples

			Some solutions for n=4
..0..1..1..1..0..0....1..1..1..0..0..0....1..1..1..0..0..0....0..0..0..0..1..1
..0..1..1..1..1..0....1..1..1..0..0..0....0..0..1..1..1..1....0..1..1..1..1..0
..0..1..1..1..0..0....0..1..1..1..0..0....0..0..1..1..1..1....0..1..1..1..1..0
..1..1..1..1..0..0....0..0..1..1..0..0....0..0..0..0..0..1....0..0..1..1..0..0
		

Formula

Empirical: a(n) = (271/5443200)*n^12 - (10327/9979200)*n^11 + (61997/2177280)*n^10 - (21923/80640)*n^9 + (417761/1814400)*n^8 + (37222841/604800)*n^7 - (2521405483/2177280)*n^6 + (8668581613/725760)*n^5 - (414044081579/5443200)*n^4 + (88564150211/302400)*n^3 - (17419930607/30240)*n^2 + (542846047/3080)*n + 850576 for n>8