A223636 Number of nX7 0..1 arrays with rows, antidiagonals and columns unimodal.
29, 841, 12657, 114713, 748950, 3907140, 17224974, 66448428, 229624238, 723456027, 2106393383, 5727793388, 14669871333, 35633091730, 82556882471, 183320486518, 391738700030, 808400385799, 1615892668057, 3136875572418
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..1..1..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..0..0 ..1..1..1..1..1..1..0....1..0..0..0..0..0..0....0..0..1..1..1..1..0 ..1..0..0..0..0..0..0....0..0..1..1..1..0..0....0..0..1..1..1..0..0 ..0..0..0..0..0..0..0....0..0..1..1..0..0..0....0..0..0..0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..201
Formula
Empirical: a(n) = (503/209563200)*n^14 - (76217/778377600)*n^13 + (88483/23950080)*n^12 - (1160261/17107200)*n^11 + (158917/435456)*n^10 + (88785757/3628800)*n^9 - (2720678887/3048192)*n^8 + (182706654569/10886400)*n^7 - (2182833462133/10886400)*n^6 + (2369225181061/1555200)*n^5 - (18729229340021/2993760)*n^4 + (2512793025389/9979200)*n^3 + (795324348531341/5821200)*n^2 - (56828168983661/90090)*n + 981755694 for n>12
Comments