cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A223632 Number of n X 3 0..1 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

7, 49, 229, 801, 2297, 5699, 12657, 25753, 48811, 87253, 148501, 242425, 381837, 583031, 866369, 1256913, 1785103, 2487481, 3407461, 4596145, 6113185, 8027691, 10419185, 13378601, 17009331, 21428317, 26767189, 33173449, 40811701, 49864927
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2013

Keywords

Comments

Column 3 of A223637.

Examples

			Some solutions for n=4:
..0..0..1....1..1..0....0..0..0....1..1..0....0..1..0....0..1..0....1..1..0
..1..0..0....0..1..1....0..0..0....1..1..0....1..1..0....0..1..1....0..1..0
..0..1..0....0..1..0....1..0..0....1..1..0....0..0..1....1..1..1....0..0..0
..0..1..0....0..1..0....1..1..1....1..1..0....0..0..1....1..1..0....0..0..0
		

Crossrefs

Cf. A223637.

Formula

Empirical: a(n) = (23/360)*n^6 + (11/120)*n^5 + (91/72)*n^4 + (11/8)*n^3 + (301/180)*n^2 + (23/15)*n + 1.
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: x*(7 + 33*x^2 - 18*x^3 + 29*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A223633 Number of n X 4 0..1 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

11, 121, 801, 3712, 13599, 42109, 114713, 282273, 639165, 1350228, 2689169, 5091414, 9224755, 16081503, 27096217, 44293439, 70470225, 109418622, 166193601, 247432316, 361730919, 520085521, 736404249, 1028097709, 1416755525
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2013

Keywords

Comments

Column 4 of A223637.

Examples

			Some solutions for n=4:
..0..0..1..0....0..1..1..0....1..0..0..0....0..0..0..1....0..1..0..0
..0..1..1..1....0..1..1..0....1..0..0..0....0..1..1..0....0..1..1..0
..1..1..1..1....0..1..1..0....1..1..0..0....1..1..1..0....0..0..0..1
..1..0..0..0....1..1..1..1....0..1..1..0....0..1..0..0....0..0..0..1
		

Crossrefs

Cf. A223637.

Formula

Empirical: a(n) = (1/112)*n^8 - (1/72)*n^7 + (203/360)*n^6 + (37/360)*n^5 + (41/144)*n^4 + (901/36)*n^3 - (168481/2520)*n^2 + (5693/60)*n - 45 for n>2.
Conjectures from Colin Barker, Aug 21 2018: (Start)
G.f.: x*(11 + 22*x + 108*x^2 - 65*x^3 + 249*x^4 - 74*x^5 + 92*x^6 + 18*x^7 + 9*x^8 - 11*x^9 + x^10) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>11.
(End)

A223634 Number of nX5 0..1 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

16, 256, 2297, 13599, 61545, 230619, 748950, 2171533, 5738616, 14032520, 32116856, 69421945, 142742110, 280837253, 531285626, 970419825, 1717396652, 2953706474, 4949721932, 8100222189, 12971210226, 20360769871, 31377189150, 47538110053
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Column 5 of A223637

Examples

			Some solutions for n=4
..0..0..0..1..1....0..1..1..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..1..1..0....1..1..1..1..1....0..0..1..1..0....0..0..0..1..1
..0..1..1..1..0....1..1..1..1..1....0..0..0..1..0....0..0..1..1..0
..0..0..1..1..0....0..0..1..0..0....0..0..0..0..1....1..1..1..1..0
		

A223635 Number of nX6 0..1 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

22, 484, 5699, 42109, 230619, 1026377, 3907140, 13135511, 39889555, 111242770, 288488044, 702553878, 1619299148, 3555008655, 7473337157, 15110365462, 29495673113, 55765989646, 102405932407, 183099750019, 319441371676
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Column 6 of A223637

Examples

			Some solutions for n=4
..0..1..1..1..0..0....1..1..1..0..0..0....1..1..1..0..0..0....0..0..0..0..1..1
..0..1..1..1..1..0....1..1..1..0..0..0....0..0..1..1..1..1....0..1..1..1..1..0
..0..1..1..1..0..0....0..1..1..1..0..0....0..0..1..1..1..1....0..1..1..1..1..0
..1..1..1..1..0..0....0..0..1..1..0..0....0..0..0..0..0..1....0..0..1..1..0..0
		

Formula

Empirical: a(n) = (271/5443200)*n^12 - (10327/9979200)*n^11 + (61997/2177280)*n^10 - (21923/80640)*n^9 + (417761/1814400)*n^8 + (37222841/604800)*n^7 - (2521405483/2177280)*n^6 + (8668581613/725760)*n^5 - (414044081579/5443200)*n^4 + (88564150211/302400)*n^3 - (17419930607/30240)*n^2 + (542846047/3080)*n + 850576 for n>8

A223636 Number of nX7 0..1 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

29, 841, 12657, 114713, 748950, 3907140, 17224974, 66448428, 229624238, 723456027, 2106393383, 5727793388, 14669871333, 35633091730, 82556882471, 183320486518, 391738700030, 808400385799, 1615892668057, 3136875572418
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Column 7 of A223637

Examples

			Some solutions for n=4
..0..1..1..1..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..0..0
..1..1..1..1..1..1..0....1..0..0..0..0..0..0....0..0..1..1..1..1..0
..1..0..0..0..0..0..0....0..0..1..1..1..0..0....0..0..1..1..1..0..0
..0..0..0..0..0..0..0....0..0..1..1..0..0..0....0..0..0..0..1..0..0
		

Formula

Empirical: a(n) = (503/209563200)*n^14 - (76217/778377600)*n^13 + (88483/23950080)*n^12 - (1160261/17107200)*n^11 + (158917/435456)*n^10 + (88785757/3628800)*n^9 - (2720678887/3048192)*n^8 + (182706654569/10886400)*n^7 - (2182833462133/10886400)*n^6 + (2369225181061/1555200)*n^5 - (18729229340021/2993760)*n^4 + (2512793025389/9979200)*n^3 + (795324348531341/5821200)*n^2 - (56828168983661/90090)*n + 981755694 for n>12

A223631 Number of n X n 0..1 arrays with rows, antidiagonals and columns unimodal.

Original entry on oeis.org

2, 16, 229, 3712, 61545, 1026377, 17224974, 291563806, 4984273228, 86086143903, 1502219415538
Offset: 1

Views

Author

R. H. Hardin Mar 24 2013

Keywords

Comments

Diagonal of A223637

Examples

			Some solutions for n=4
..1..0..0..0....0..1..0..0....0..0..0..0....0..0..1..0....1..1..1..0
..1..1..1..1....0..0..0..0....1..1..0..0....1..1..1..1....1..1..1..1
..1..1..1..1....0..0..0..1....1..1..1..1....0..0..1..1....1..1..1..1
..0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..1....1..1..1..0
		
Showing 1-6 of 6 results.