cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223639 Number of n X 3 0..1 arrays with rows, columns, diagonals and antidiagonals unimodal.

Original entry on oeis.org

7, 49, 218, 726, 2014, 4904, 10797, 21917, 41601, 74635, 127636, 209480, 331776, 509386, 760991, 1109703, 1583723, 2217045, 3050206, 4131082, 5515730, 7269276, 9466849, 12194561, 15550533, 19645967, 24606264, 30572188, 37701076, 46168094
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2013

Keywords

Comments

Column 3 of A223644.

Examples

			Some solutions for n=4:
..0..1..1....1..1..0....0..0..0....0..1..0....0..1..1....0..1..0....0..0..1
..0..1..1....1..1..0....1..1..0....1..1..0....1..1..0....1..1..0....0..0..1
..1..1..0....1..1..0....1..1..0....0..1..1....0..0..0....1..1..0....0..1..1
..1..0..0....0..0..1....0..0..1....0..0..1....0..0..0....1..0..0....0..1..1
		

Crossrefs

Cf. A223644.

Formula

Empirical: a(n) = (23/360)*n^6 - (3/40)*n^5 + (31/18)*n^4 + (5/8)*n^3 + (1517/360)*n^2 - (51/20)*n + 3.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(7 + 22*x^2 - 16*x^3 + 40*x^4 - 10*x^5 + 3*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)