A223639 Number of n X 3 0..1 arrays with rows, columns, diagonals and antidiagonals unimodal.
7, 49, 218, 726, 2014, 4904, 10797, 21917, 41601, 74635, 127636, 209480, 331776, 509386, 760991, 1109703, 1583723, 2217045, 3050206, 4131082, 5515730, 7269276, 9466849, 12194561, 15550533, 19645967, 24606264, 30572188, 37701076, 46168094
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..1....1..1..0....0..0..0....0..1..0....0..1..1....0..1..0....0..0..1 ..0..1..1....1..1..0....1..1..0....1..1..0....1..1..0....1..1..0....0..0..1 ..1..1..0....1..1..0....1..1..0....0..1..1....0..0..0....1..1..0....0..1..1 ..1..0..0....0..0..1....0..0..1....0..0..1....0..0..0....1..0..0....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223644.
Formula
Empirical: a(n) = (23/360)*n^6 - (3/40)*n^5 + (31/18)*n^4 + (5/8)*n^3 + (1517/360)*n^2 - (51/20)*n + 3.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(7 + 22*x^2 - 16*x^3 + 40*x^4 - 10*x^5 + 3*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments