A223640 Number of n X 4 0..1 arrays with rows, columns, diagonals and antidiagonals unimodal.
11, 121, 726, 2962, 9808, 28450, 74599, 179991, 404599, 855417, 1714062, 3275798, 6002946, 10596004, 18086161, 29953249, 48273537, 75902131, 116695104, 175776840, 259858436, 377613366, 540116971, 761356699, 1058820379, 1454170173
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..0....1..1..0..0....1..0..0..0....0..1..1..1....0..0..1..1 ..0..1..1..1....1..1..1..0....0..1..0..0....0..0..1..1....0..1..1..1 ..0..1..1..0....0..1..1..1....0..0..0..0....0..0..0..0....0..0..0..0 ..0..0..1..0....0..0..0..1....0..0..1..0....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223644.
Formula
Empirical: a(n) = (1/112)*n^8 - (19/210)*n^7 + (107/90)*n^6 - (197/40)*n^5 + (2219/144)*n^4 + (5093/120)*n^3 - (868411/2520)*n^2 + (417721/420)*n - 1091 for n>4.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(11 + 22*x + 33*x^2 - 140*x^3 + 508*x^4 - 314*x^5 - 17*x^6 + 432*x^7 - 233*x^8 + 28*x^9 + 56*x^10 - 28*x^11 + 2*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)
Comments