cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223660 Number of nX2 0..3 arrays with row sums unimodal and column sums inverted unimodal.

Original entry on oeis.org

16, 256, 3060, 29922, 252912, 1912914, 13254601, 85563043, 521069404, 3022541224, 16826714534, 90449485556, 471770734372, 2397374836954, 11909366979539, 57999389713133, 277578926336176, 1308191004875392, 6081976574677816, 27936365857925926, 126946765412455656
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Examples

			Some solutions for n=3:
..3..3....3..2....0..0....0..0....3..1....1..0....1..0....2..0....1..3....3..1
..1..3....2..2....1..3....0..1....0..2....2..1....3..1....0..2....2..3....0..3
..1..1....0..3....3..0....2..0....2..0....0..3....1..2....3..0....1..0....1..0
		

Crossrefs

Column 2 of A223663.

Formula

Empirical: a(n) = 31*a(n-1) -437*a(n-2) +3707*a(n-3) -21099*a(n-4) +85029*a(n-5) -249431*a(n-6) +538841*a(n-7) -856504*a(n-8) +988504*a(n-9) -804432*a(n-10) +436752*a(n-11) -141696*a(n-12) +20736*a(n-13).
Empirical g.f.: -x*( 16 -240*x +2116*x^2 -12378*x^3 +51142*x^4 -153984*x^5 +342369*x^6 -562536*x^7 +675688*x^8 -578496*x^9 +336528*x^10 -120960*x^11 +20736*x^12) / ( (-1+4*x)^2 *(x-1)^3 *(3*x-1)^4 *(2*x-1)^4 ). - R. J. Mathar, May 17 2014