A223660 Number of nX2 0..3 arrays with row sums unimodal and column sums inverted unimodal.
16, 256, 3060, 29922, 252912, 1912914, 13254601, 85563043, 521069404, 3022541224, 16826714534, 90449485556, 471770734372, 2397374836954, 11909366979539, 57999389713133, 277578926336176, 1308191004875392, 6081976574677816, 27936365857925926, 126946765412455656
Offset: 1
Keywords
Examples
Some solutions for n=3: ..3..3....3..2....0..0....0..0....3..1....1..0....1..0....2..0....1..3....3..1 ..1..3....2..2....1..3....0..1....0..2....2..1....3..1....0..2....2..3....0..3 ..1..1....0..3....3..0....2..0....2..0....0..3....1..2....3..0....1..0....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A223663.
Formula
Empirical: a(n) = 31*a(n-1) -437*a(n-2) +3707*a(n-3) -21099*a(n-4) +85029*a(n-5) -249431*a(n-6) +538841*a(n-7) -856504*a(n-8) +988504*a(n-9) -804432*a(n-10) +436752*a(n-11) -141696*a(n-12) +20736*a(n-13).
Empirical g.f.: -x*( 16 -240*x +2116*x^2 -12378*x^3 +51142*x^4 -153984*x^5 +342369*x^6 -562536*x^7 +675688*x^8 -578496*x^9 +336528*x^10 -120960*x^11 +20736*x^12) / ( (-1+4*x)^2 *(x-1)^3 *(3*x-1)^4 *(2*x-1)^4 ). - R. J. Mathar, May 17 2014