A223665 Number of nX4 0..1 arrays with rows, diagonals and antidiagonals unimodal.
11, 121, 948, 6454, 44693, 321163, 2343189, 17087771, 124218846, 901767902, 6546694983, 47541956223, 345294309121, 2507850941319, 18213891195978, 132281285512572, 960713718887517, 6977351377339193, 50674293382202763
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..1....0..1..1..1....0..1..0..0....0..1..0..0....0..1..1..0 ..1..1..1..0....0..1..1..1....0..1..0..0....0..1..0..0....0..1..1..0 ..1..1..0..0....0..1..1..0....1..0..0..0....0..1..0..0....1..1..1..1 ..0..0..1..0....0..0..0..0....0..1..0..0....0..0..1..0....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 9*a(n-1) -8*a(n-2) -63*a(n-3) +250*a(n-4) -152*a(n-5) -522*a(n-6) -2735*a(n-7) +4120*a(n-8) +9651*a(n-9) +1347*a(n-10) -13682*a(n-11) -24899*a(n-12) +6443*a(n-13) +11258*a(n-14) +8578*a(n-15) -11567*a(n-16) +8480*a(n-17) +22660*a(n-18) -17587*a(n-19) +2236*a(n-20) +4536*a(n-21) -2700*a(n-22) -864*a(n-23)
Comments