cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223666 Number of nX5 0..1 arrays with rows, diagonals and antidiagonals unimodal.

This page as a plain text file.
%I A223666 #6 Jul 23 2025 04:22:03
%S A223666 16,256,2527,18980,136289,1023339,8052573,64796052,523162622,
%T A223666 4210122961,33781534586,270773273163,2170507336531,17404421705191,
%U A223666 139588544598990,1119608454999432,8980016929917601,72024132676487746,577661751732689211
%N A223666 Number of nX5 0..1 arrays with rows, diagonals and antidiagonals unimodal.
%C A223666 Column 5 of A223669
%H A223666 R. H. Hardin, <a href="/A223666/b223666.txt">Table of n, a(n) for n = 1..210</a>
%F A223666 Empirical: a(n) = 14*a(n-1) -52*a(n-2) +2*a(n-3) +197*a(n-4) +854*a(n-5) -1805*a(n-6) -26237*a(n-7) +86043*a(n-8) -70614*a(n-9) +170464*a(n-10) +399202*a(n-11) -2739146*a(n-12) +4095044*a(n-13) -10039780*a(n-14) +2577182*a(n-15) +24545705*a(n-16) -54040002*a(n-17) +167369490*a(n-18) -85060776*a(n-19) -28060708*a(n-20) -389208891*a(n-21) +459909922*a(n-22) +2683456378*a(n-23) -4388644180*a(n-24) -5542051151*a(n-25) -2414407341*a(n-26) +32349457536*a(n-27) +12515704412*a(n-28) -98186425408*a(n-29) -47665614177*a(n-30) +197523619448*a(n-31) +269900883869*a(n-32) -475417489889*a(n-33) -557567876049*a(n-34) +781710113042*a(n-35) +1046331021897*a(n-36) -847156975368*a(n-37) -2150199310855*a(n-38) +1141102444689*a(n-39) +2763026992524*a(n-40) -1108892309385*a(n-41) -3095005070434*a(n-42) +372805026225*a(n-43) +3825246453473*a(n-44) -381900163490*a(n-45) -3024861283470*a(n-46) +239728926637*a(n-47) +2504270286051*a(n-48) +252573497058*a(n-49) -2433283268771*a(n-50) -401711721919*a(n-51) +374998537102*a(n-52) +1383132583853*a(n-53) -540047390184*a(n-54) +123349296118*a(n-55) +364680760759*a(n-56) -406537833072*a(n-57) +329370465626*a(n-58) -927362054456*a(n-59) +96704047076*a(n-60) -90681009763*a(n-61) +444716709062*a(n-62) +392499685319*a(n-63) -228651167608*a(n-64) -64865394701*a(n-65) -27260982030*a(n-66) -5237026151*a(n-67) +5531571132*a(n-68) -124945968364*a(n-69) +62262537257*a(n-70) +50291998098*a(n-71) -17594004031*a(n-72) -1497064747*a(n-73) -14021053454*a(n-74) +17588728808*a(n-75) -464880468*a(n-76) -4736625394*a(n-77) -1543338426*a(n-78) +962821324*a(n-79) +1113573248*a(n-80) -451839972*a(n-81) -202718964*a(n-82) +36440824*a(n-83) +88759936*a(n-84) -3568528*a(n-85) -21856096*a(n-86) -1651968*a(n-87) +2626688*a(n-88) +1258624*a(n-89) -261376*a(n-90) -184320*a(n-91) +14336*a(n-92) +8192*a(n-93)
%e A223666 Some solutions for n=4
%e A223666 ..1..1..1..1..0....0..0..1..1..1....1..1..1..1..1....1..1..1..0..0
%e A223666 ..0..1..1..1..1....1..1..1..1..1....0..1..1..1..1....0..1..0..0..0
%e A223666 ..1..1..1..1..0....0..1..1..1..1....0..1..1..0..0....1..1..1..0..0
%e A223666 ..0..1..1..0..0....1..1..1..0..0....1..0..0..0..0....0..0..1..0..0
%K A223666 nonn
%O A223666 1,1
%A A223666 _R. H. Hardin_ Mar 25 2013