A223670 Number of 3 X n 0..1 arrays with rows, diagonals and antidiagonals unimodal.
8, 64, 292, 948, 2527, 5913, 12577, 24821, 46068, 81198, 136930, 222250, 348885, 531823, 789879, 1146307, 1629458, 2273484, 3119088, 4214320, 5615419, 7387701, 9606493, 12358113, 15740896, 19866266, 24859854, 30862662, 38032273, 46544107
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..1..1....0..1..1..0....0..0..1..1....0..0..0..1....1..0..0..0 ..1..1..0..0....0..1..0..0....0..1..0..0....0..0..1..1....0..1..1..1 ..0..0..0..0....0..1..1..0....1..0..0..0....0..1..1..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223669.
Formula
Empirical: a(n) = (23/360)*n^6 - (3/40)*n^5 + (37/18)*n^4 + (119/24)*n^3 - (3103/360)*n^2 + (997/60)*n - 9 for n>1.
Conjectures from Colin Barker, Mar 16 2018: (Start)
G.f.: x*(8 + 8*x + 12*x^2 - 32*x^3 + 63*x^4 - 16*x^5 + 5*x^6 - 2*x^7) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>8.
(End)
Comments