A223673 Number of 6Xn 0..1 arrays with rows, diagonals and antidiagonals unimodal.
64, 4096, 61996, 321163, 1023339, 2715255, 6789502, 16634224, 40086061, 94218637, 214377471, 470774847, 998649425, 2051656863, 4092563126, 7942987666, 15025087905, 27743027247, 50072239147, 88451496245, 153108327757
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..0....0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0 ..0..1..0..0....0..0..0..0....0..1..1..0....0..1..1..0....0..0..0..0 ..0..0..1..0....1..0..0..0....1..1..1..1....0..1..1..0....0..1..0..0 ..0..0..0..1....0..0..0..0....1..1..1..1....1..1..0..0....1..0..0..0 ..0..1..1..1....0..1..0..0....1..1..1..0....0..0..0..0....0..1..0..0 ..0..1..1..1....0..0..0..0....1..1..1..0....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..129
Formula
Empirical: a(n) = (271/5443200)*n^12 - (5527/1995840)*n^11 + (284203/2721600)*n^10 - (97799/51840)*n^9 - (4335667/259200)*n^8 + (68712079/30240)*n^7 - (50002254419/680400)*n^6 + (495395854627/362880)*n^5 - (42767475646507/2721600)*n^4 + (1367715597167/12960)*n^3 - (3261545344751/10800)*n^2 - (3687840940699/6930)*n + 4224261488 for n>20
Comments