cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223679 Number of nX7 0..1 arrays with rows and antidiagonals unimodal.

This page as a plain text file.
%I A223679 #6 Jul 23 2025 04:23:18
%S A223679 29,841,16857,275775,4123210,58944337,821284360,11265254628,
%T A223679 152970187735,2064772010660,27771600878598,372727832822131,
%U A223679 4995706936865652,66902046494918683,895490435068510617,11982518313043515007
%N A223679 Number of nX7 0..1 arrays with rows and antidiagonals unimodal.
%C A223679 Column 7 of A223680
%H A223679 R. H. Hardin, <a href="/A223679/b223679.txt">Table of n, a(n) for n = 1..210</a>
%F A223679 Empirical: a(n) = 29*a(n-1) -296*a(n-2) +1435*a(n-3) -3427*a(n-4) -7828*a(n-5) +49592*a(n-6) +352558*a(n-7) -636195*a(n-8) -10876335*a(n-9) +33814287*a(n-10) +11969416*a(n-11) -303909144*a(n-12) +441678604*a(n-13) +3422280936*a(n-14) -8859148026*a(n-15) +852850231*a(n-16) -40652559025*a(n-17) +224135872305*a(n-18) -288423328788*a(n-19) -387179703160*a(n-20) +1064968890514*a(n-21) +233134451136*a(n-22) -1109142831534*a(n-23) +8548651106250*a(n-24) -48852225377678*a(n-25) +122390385655489*a(n-26) -195703619047481*a(n-27) +392869508379804*a(n-28) -1151435265560089*a(n-29) +2171538014535193*a(n-30) -2300815249155302*a(n-31) +1897414184113747*a(n-32) -1653214464072941*a(n-33) -137348547691080*a(n-34) +9036579264546509*a(n-35) -25618517273435769*a(n-36) +39827335881630628*a(n-37) -72361643136916710*a(n-38) +153209010276945668*a(n-39) -202596443036523874*a(n-40) +120138000799594382*a(n-41) +3287904513855923*a(n-42) -79300534420052725*a(n-43) +265881642838692769*a(n-44) -575489964002754564*a(n-45) +652989472152746893*a(n-46) -369186741991254341*a(n-47) -11325499984554073*a(n-48) +358162777599477400*a(n-49) -655515344162720269*a(n-50) +756584002882183489*a(n-51) -633515360531580266*a(n-52) +387864257955999943*a(n-53) +2512474825339141*a(n-54) -446721853742066924*a(n-55) +629695429101778274*a(n-56) -471305399541927500*a(n-57) +240594715609426998*a(n-58) -155135547438406450*a(n-59) +164328285437212760*a(n-60) -133901062998735172*a(n-61) +59901911520102136*a(n-62) -6917958139189656*a(n-63) -14599393419547920*a(n-64) +23267385598748520*a(n-65) -22070070657235008*a(n-66) +12659868667050624*a(n-67) -4121488825869312*a(n-68) +681725317178880*a(n-69) -43934723481600*a(n-70)
%e A223679 Some solutions for n=3
%e A223679 ..0..1..1..0..0..0..0....1..1..1..0..0..0..0....0..1..1..1..1..1..1
%e A223679 ..1..1..1..1..0..0..0....0..0..0..0..0..0..0....1..1..1..0..0..0..0
%e A223679 ..0..0..0..0..0..0..1....0..0..0..1..1..1..1....0..0..0..0..0..0..0
%K A223679 nonn
%O A223679 1,1
%A A223679 _R. H. Hardin_ Mar 25 2013