This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223680 #6 Jul 23 2025 04:23:25 %S A223680 2,4,4,7,16,8,11,49,64,16,16,121,316,256,32,22,256,1118,2032,1024,64, %T A223680 29,484,3177,9822,13045,4096,128,37,841,7745,35509,85663,83737,16384, %U A223680 256,46,1369,16857,105995,384009,744272,537496,65536,512,56,2116,33615,275775 %N A223680 T(n,k)=Number of nXk 0..1 arrays with rows and antidiagonals unimodal. %C A223680 Table starts %C A223680 ....2.......4.........7.........11..........16...........22............29 %C A223680 ....4......16........49........121.........256..........484...........841 %C A223680 ....8......64.......316.......1118........3177.........7745.........16857 %C A223680 ...16.....256......2032.......9822.......35509.......105995........275775 %C A223680 ...32....1024.....13045......85663......384009......1363639.......4123210 %C A223680 ...64....4096.....83737.....744272.....4106403.....17068664......58944337 %C A223680 ..128...16384....537496....6458585....43632367....210660192.....821284360 %C A223680 ..256...65536...3450100...56030742...462307835...2577807779...11265254628 %C A223680 ..512..262144..22145617..486038270..4893189359..31402790284..152970187735 %C A223680 .1024.1048576.142149013.4215998078.51766786082.381690187059.2064772010660 %H A223680 R. H. Hardin, <a href="/A223680/b223680.txt">Table of n, a(n) for n = 1..480</a> %F A223680 Empirical for column k: %F A223680 k=1: a(n) = 2*a(n-1) %F A223680 k=2: a(n) = 4*a(n-1) %F A223680 k=3: a(n) = 7*a(n-1) -3*a(n-2) -5*a(n-3) +2*a(n-4) %F A223680 k=4: [order 9] %F A223680 k=5: [order 19] %F A223680 k=6: [order 36] %F A223680 k=7: [order 70] %F A223680 Empirical for row n: %F A223680 n=1: a(n) = (1/2)*n^2 + (1/2)*n + 1 %F A223680 n=2: a(n) = (1/4)*n^4 + (1/2)*n^3 + (5/4)*n^2 + 1*n + 1 %F A223680 n=3: a(n) = (23/360)*n^6 + (31/120)*n^5 + (17/9)*n^4 + (23/24)*n^3 + (917/360)*n^2 + (77/60)*n + 1 %F A223680 n=4: polynomial of degree 8 %F A223680 n=5: polynomial of degree 10 for n>2 %F A223680 n=6: polynomial of degree 12 for n>3 %F A223680 n=7: polynomial of degree 14 for n>4 %e A223680 Some solutions for n=3 k=4 %e A223680 ..0..0..0..0....0..0..1..1....1..1..0..0....0..0..0..1....0..0..0..0 %e A223680 ..1..0..0..0....0..1..1..0....0..1..1..0....1..1..0..0....1..0..0..0 %e A223680 ..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0....1..1..0..0 %Y A223680 Column 1 is A000079 %Y A223680 Column 2 is A000302 %Y A223680 Column 3 is A188868 %Y A223680 Row 1 is A000124 %Y A223680 Row 2 is A086601 %K A223680 nonn,tabl %O A223680 1,1 %A A223680 _R. H. Hardin_ Mar 25 2013