cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223682 Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal.

This page as a plain text file.
%I A223682 #8 Aug 22 2018 09:18:34
%S A223682 16,256,2032,9822,35509,105995,275775,646407,1395174,2815594,5372794,
%T A223682 9777124,17079747,28794301,47049089,74774613,115931628,175785252,
%U A223682 261231028,381179194,547003777,773063487,1077301747,1481933555
%N A223682 Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal.
%C A223682 Row 4 of A223680.
%H A223682 R. H. Hardin, <a href="/A223682/b223682.txt">Table of n, a(n) for n = 1..210</a>
%F A223682 Empirical: a(n) = (1/112)*n^8 + (79/1260)*n^7 + (121/120)*n^6 + (71/36)*n^5 + (475/48)*n^4 - (1757/180)*n^3 + (8893/840)*n^2 - (569/84)*n + 9.
%F A223682 Conjectures from _Colin Barker_, Aug 22 2018: (Start)
%F A223682 G.f.: x*(16 + 112*x + 304*x^2 - 594*x^3 + 775*x^4 - 442*x^5 + 216*x^6 - 36*x^7 + 9*x^8) / (1 - x)^9.
%F A223682 a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
%F A223682 (End)
%e A223682 Some solutions for n=3:
%e A223682 ..1..1..0....0..0..1....1..0..0....0..0..0....0..1..1....1..1..0....0..1..0
%e A223682 ..1..1..0....0..0..0....0..1..0....1..1..0....0..1..0....0..1..0....0..0..1
%e A223682 ..0..1..1....0..0..0....1..0..0....0..1..1....0..0..0....1..1..0....1..1..1
%e A223682 ..0..0..1....0..1..1....0..1..0....1..1..0....0..1..1....1..0..0....0..1..0
%Y A223682 Cf. A223680.
%K A223682 nonn
%O A223682 1,1
%A A223682 _R. H. Hardin_, Mar 25 2013