A223684 Number of 6Xn 0..1 arrays with rows and antidiagonals unimodal.
64, 4096, 83737, 744272, 4106403, 17068664, 58944337, 178002044, 484800960, 1215412314, 2845433373, 6286999243, 13216899344, 26605753969, 51547601046, 96528061541, 175319673499, 309757515173, 533729732564, 898819275234
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..1..0....1..0..0....0..0..1....1..0..0....1..1..0....0..0..1....1..1..1 ..0..1..1....0..1..0....1..0..0....1..1..1....0..0..1....0..1..0....0..1..1 ..1..1..0....0..1..1....0..1..1....1..1..1....0..1..0....1..1..1....1..1..1 ..0..0..1....1..1..0....1..0..0....0..0..0....0..0..1....0..1..1....0..1..1 ..0..1..1....1..1..0....0..1..1....0..1..0....0..1..0....0..0..0....0..1..1 ..0..1..1....1..1..0....1..0..0....1..1..0....0..0..0....0..1..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (271/5443200)*n^12 + (2327/3326400)*n^11 + (44081/1360800)*n^10 + (67031/362880)*n^9 + (1007557/226800)*n^8 + (1582/675)*n^7 + (211210703/1360800)*n^6 - (60265871/120960)*n^5 + (11265884461/5443200)*n^4 - (118533836/14175)*n^3 + (2826245099/151200)*n^2 - (113088191/3960)*n + 23503 for n>3
Comments