A223685 Number of 7Xn 0..1 arrays with rows and antidiagonals unimodal.
128, 16384, 537496, 6458585, 43632367, 210660192, 821284360, 2758051780, 8275194605, 22704480123, 57880672236, 138698869116, 315159317570, 683706718357, 1423847390903, 2859216983489, 5556849891974, 10484853235610
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..1....0..0..1....0..0..0....0..0..1....0..0..0....0..0..0 ..0..1..1....0..0..1....0..0..1....0..1..1....0..0..1....0..1..1....0..0..0 ..1..1..0....0..1..0....0..1..1....0..0..0....0..0..0....1..1..0....1..1..0 ..1..1..1....0..0..1....0..1..1....0..1..0....0..1..0....0..0..0....0..1..0 ..0..1..0....1..1..1....1..1..0....1..1..0....0..1..1....1..1..0....0..1..0 ..0..1..0....1..1..0....1..0..0....1..1..0....0..0..1....0..0..0....1..1..0 ..0..0..1....0..0..0....0..0..0....0..1..1....0..0..0....0..1..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (503/209563200)*n^14 + (6527/155675520)*n^13 + (68839/23950080)*n^12 + (1220297/59875200)*n^11 + (1890089/2177280)*n^10 + (181499/362880)*n^9 + (1367211271/15240960)*n^8 - (1887455579/5443200)*n^7 + (43827922247/10886400)*n^6 - (12546180643/544320)*n^5 + (1259322375259/11975040)*n^4 - (234159554591/554400)*n^3 + (13743908156557/11642400)*n^2 - (52010645243/24024)*n + 1969115 for n>4
Comments