cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A223686 Petersen graph (8,2) coloring a rectangular array: number of n X n 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

16, 432, 37008, 10817856, 13402129824, 74643295612752, 1976213549179804032, 244416339950128320684528, 139152886517246213927902144464, 360255300295725548907055827488837568
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Diagonal of A223692

Examples

			Some solutions for n=3
..8.14.12....5.13.11...14..8..0...10..8..0....1..2.10...13.15..7...12.10.12
..8.14..6...11.13.11....0..8..0...14..8..0...10.12.10....9.15.13...12.14.12
..6..7..6...11..9..1...14..8..0....0..8..0...14.12.14...13.15.13...12..4.12
		

A223687 Petersen graph (8,2) coloring a rectangular array: number of n X 3 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

144, 2304, 37008, 595584, 9594000, 154616832, 2492365968, 40180445568, 647800215696, 10444288589568, 168392298756240, 2714990519274624, 43773950520548496, 705771016545286656, 11379212680977220752
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Comments

Column 3 of A223692.

Examples

			Some solutions for n=3:
.14..8.14...13..5..6...14..8.14...13.15..9....0..8.14....7.15..9....3.11.13
.10.12.14....6..5..6....0..8.10....9.15.13...14.12..4...13.15.13....3.11.13
.14..8..0....4..5..4...10..8.10...13.11..9....4..5.13...13.11..3...13.15..9
		

Crossrefs

Cf. A223692.

Formula

Empirical: a(n) = 24*a(n-1) - 127*a(n-2).
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: 144*x*(1 - 8*x) / (1 - 24*x + 127*x^2).
a(n) = (72*((12-sqrt(17))^n*(-31+8*sqrt(17)) + (12+sqrt(17))^n*(31+8*sqrt(17)))) / (127*sqrt(17)).
(End)

A223688 Petersen graph (8,2) coloring a rectangular array: number of n X 4 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

432, 12384, 363600, 10817856, 324280368, 9762152544, 294583794768, 8901308553408, 269168305340592, 8142829402619232, 246392700317804880, 7456528028109531456, 225671563725028735536, 6830216796989608170336
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Comments

Column 4 of A223692.

Examples

			Some solutions for n=3:
..6.14..6.14....0..8.10..2....4..5..4..3....6..7.15.13....2.10.12.14
..6.14..6..7...10..2.10..8....4..3.11.13...15..9.11..3...12.14..8..0
..6..7.15..9...10..8.10..2...11..9.15..7...15.13.11..9....8.10..8.14
		

Crossrefs

Cf. A223692.

Formula

Empirical: a(n) = 59*a(n-1) - 1103*a(n-2) + 7621*a(n-3) - 16900*a(n-4).
Empirical g.f.: 144*x*(3 - 91*x + 760*x^2 - 1856*x^3) / (1 - 59*x + 1103*x^2 - 7621*x^3 + 16900*x^4). - Colin Barker, Aug 22 2018

A223689 Petersen graph (8,2) coloring a rectangular array: number of nX5 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

1296, 66816, 3788640, 223096320, 13402129824, 814399853760, 49817845241568, 3059068970173824, 188252023352797728, 11599193857488796224, 715189042123683831648, 44115021488935804260096, 2721759594409941703146144
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 5 of A223692

Examples

			Some solutions for n=3
..0..1..9.15..7....0..8..0..1..0....0..8..0..1..0....0..1..9.15.13
..9.15..7.15..9...10..8..0..8.10....0..1..9..1..9....9.15.13.11.13
..9.15..7.15..9....0..8.10..2..3....9..1..9..1..9....7.15.13.15.13
		

Formula

Empirical: a(n) = 144*a(n-1) -7582*a(n-2) +191344*a(n-3) -2550861*a(n-4) +18205352*a(n-5) -64961020*a(n-6) +89885952*a(n-7) for n>8

A223690 Petersen graph (8,2) coloring a rectangular array: number of nX6 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

3888, 361440, 40075632, 4777430544, 591191889840, 74643295612752, 9525534763343040, 1222395248538717264, 157321448699750643600, 20277258143648241944160, 2615539308991446742728768
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 6 of A223692

Examples

			Some solutions for n=3
..0..1..0..1..0..1....0..1..0..1..0..7....0..1..2..3..4..3....0..1..2..3..2.10
..0..1..2..1..9.15....0..1..9..1..0..1....0..1..2..3..2..3....0..1..2..3..2..1
..2..3..2..1..9.11....9..1..2..1..0..8....2..3.11..3..4.12....9..1..2..3..2..3
		

Formula

Empirical: a(n) = 401*a(n-1) -67694*a(n-2) +6504059*a(n-3) -403267020*a(n-4) +17269251540*a(n-5) -532092758621*a(n-6) +12101188571236*a(n-7) -206320877728788*a(n-8) +2658718377091780*a(n-9) -25945070103424624*a(n-10) +190941914146453840*a(n-11) -1048187391730269952*a(n-12) +4206893801397638144*a(n-13) -11933406529828884480*a(n-14) +22565682238558950400*a(n-15) -25420286353912320000*a(n-16) +12855838934016000000*a(n-17) for n>18

A223691 Petersen graph (8,2) coloring a rectangular array: number of nX7 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

11664, 1958400, 427910688, 105181093728, 27354210143760, 7306668414672912, 1976213549179804032, 537590994035364946080, 146628829869224648953104, 40041688438868960037567888, 10940705072365974924084181632
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 7 of A223692

Examples

			Some solutions for n=3
..0..8..0..7..0..8.14....0..8..0..8.14..8.10....0..8..0..7..0..8.10
..0..1..0..8.10..8.14....0..1..0..8.10..8.10....0..1..0..8.14..8.14
..0..8.14..8.14.12..4....0..8.10.12.14.12..4....0..8.10.12.14..8..0
		

Formula

Empirical: a(n) = 1086*a(n-1) -531412*a(n-2) +158094980*a(n-3) -32410930846*a(n-4) +4908226206408*a(n-5) -573852807039185*a(n-6) +53400679876499522*a(n-7) -4043740938388278819*a(n-8) +253377675360372449192*a(n-9) -13308243144653502627481*a(n-10) +591925141439612661784684*a(n-11) -22476584822490304309227208*a(n-12) +733377830171664860370276240*a(n-13) -20668216205684384369132006348*a(n-14) +505151658011352505409536686256*a(n-15) -10740846559770086966587503992656*a(n-16) +199132670082450344228955916635968*a(n-17) -3223956089417146847925736666737216*a(n-18) +45616121783730217980375443174162176*a(n-19) -564109268450114144356247682493236992*a(n-20) +6093239525425067500620348564148222976*a(n-21) -57408782275783331967719619596868386816*a(n-22) +470779256244829339558966580058292297728*a(n-23) -3350072681530689187999087996905738256384*a(n-24) +20604136944041220068277963986834557632512*a(n-25) -108965940022844399893768389174827615780864*a(n-26) +492319642410153174280023744602906857308160*a(n-27) -1884873456661994572673878158904610103754752*a(n-28) +6052466952381767435992297433147355936325632*a(n-29) -16088666991199490883777321896965785979453440*a(n-30) +34809776132412259456097195026586154722918400*a(n-31) -59942025483399281813642878281718771482624000*a(n-32) +79650745755927529352419738724545918402560000*a(n-33) -78083626716552401272257438862661595955200000*a(n-34) +52604639147660467533801102895636021248000000*a(n-35) -21418655547537750460943435612081356800000000*a(n-36) +3876257338090726186738574721810432000000000*a(n-37) for n>39

A223693 Petersen graph (8,2) coloring a rectangular array: number of 2 X n 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

256, 432, 2304, 12384, 66816, 361440, 1958400, 10622304, 57652992, 313044192, 1700213760, 9235776096, 50175150336, 272604245472, 1481134892544, 8047630034784, 43726888532736, 237593019598560, 1290986302371840
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Comments

Row 2 of A223692.

Examples

			Some solutions for n=3:
..2.10..2....6.14.12....6..7..0...13.11..3....4..5..6....1..9..1...11.13..5
..2..3.11....8.10..2....6..7..0....3.11.13....4..5.13....1..0..8....5..4..3
		

Crossrefs

Cf. A223692.

Formula

Empirical: a(n) = 8*a(n-1) - 11*a(n-2) - 16*a(n-3) for n>4.
Empirical g.f.: 16*x*(16 - 101*x + 104*x^2 + 175*x^3) / (1 - 8*x + 11*x^2 + 16*x^3). - Colin Barker, Aug 22 2018

A223694 Petersen graph (8,2) coloring a rectangular array: number of 3Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

4096, 3888, 37008, 363600, 3788640, 40075632, 427910688, 4599435024, 49661922528, 537886587312, 5838098127264, 63455538372048, 690372511036128, 7515830878003440, 81857442742673184, 891795388496947344
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 3 of A223692

Examples

			Some solutions for n=3
.15..7..0...11..3..4....5.13.15....0..1..0....9.11.13...15.13.15....7..6..7
.15..7.15...11..3..4....5.13..5....0..1..0...13..5..6....5.13.15....7.15.13
.15..7..6...11..3..4....5.13.11....0..1..2....6..5..6...15..9..1....9.11.13
		

Formula

Empirical: a(n) = 13*a(n-1) +15*a(n-2) -391*a(n-3) -399*a(n-4) +1739*a(n-5) +205*a(n-6) -2013*a(n-7) +580*a(n-8) +396*a(n-9) -144*a(n-10) for n>12

A223695 Petersen graph (8,2) coloring a rectangular array: number of 4Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

65536, 34992, 595584, 10817856, 223096320, 4777430544, 105181093728, 2349947152944, 52986541817952, 1201648395980448, 27349053878517120, 623834583118758144, 14249136041512493184, 325740124104297732288
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 4 of A223692

Examples

			Some solutions for n=3
.12.10.12...12.10.12...12.14.12....0..8.10....8.14..8....0..8..0....8.14..8
.12.10..2....2.10..8....6.14..6...14..8..0....8.14..8....0..7..6....8.14..6
..2..3..2...12.10..8....6..5..6...14..8.10....8..0..1....6.14.12....6..7.15
.11..3.11....8.10..8....6..5..4...10.12.10....8..0..7....8.10.12....6..7..6
		

Formula

Empirical: a(n) = 25*a(n-1) +166*a(n-2) -4762*a(n-3) -15242*a(n-4) +261578*a(n-5) +557344*a(n-6) -5966572*a(n-7) -10691953*a(n-8) +66155465*a(n-9) +113681634*a(n-10) -380763790*a(n-11) -672252588*a(n-12) +1143346268*a(n-13) +2171718000*a(n-14) -1723023332*a(n-15) -3753952336*a(n-16) +1173055984*a(n-17) +3382164960*a(n-18) -244043008*a(n-19) -1495422976*a(n-20) -17107712*a(n-21) +299094528*a(n-22) +3904512*a(n-23) -19066880*a(n-24) for n>27

A223696 Petersen graph (8,2) coloring a rectangular array: number of 5Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal or antidiagonal neighbor moves along an edge of this graph.

Original entry on oeis.org

1048576, 314928, 9594000, 324280368, 13402129824, 591191889840, 27354210143760, 1293471735751296, 61933740980042304, 2984692997464098912, 144343684567762971120, 6993841193566081166304, 339216516694812207641184
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 5 of A223692

Examples

			Some solutions for n=3
..0..8..0....0..8.10....0..8..0....0..8.10....0..8.10....0..8.10....0..8..0
..0..8.14...10.12.14....0..8.14...10..2..1....0..8..0....0..8..0...14..8.14
.14.12..4...14..8.14...14..6..7....1..9..1....0..1..2....0..1..9...14..8.14
..4.12.10....0..8.14....7.15..9...15..9..1....2.10..2....0..1..2...14.12.10
.10..8.10....0..8..0...13.11..3....1..9.11....2..3..4....2.10..8...14.12.10
		

Formula

Empirical: a(n) = 49*a(n-1) +1149*a(n-2) -54553*a(n-3) -602386*a(n-4) +22539526*a(n-5) +168856235*a(n-6) -4739772443*a(n-7) -27906843985*a(n-8) +585223526373*a(n-9) +2872407489518*a(n-10) -46282513826226*a(n-11) -192040108925264*a(n-12) +2486874087870184*a(n-13) +8628900648978674*a(n-14) -94654762799642954*a(n-15) -267321413702673087*a(n-16) +2627149904290023359*a(n-17) +5796172228567236581*a(n-18) -54198658366198986369*a(n-19) -88050631022790827510*a(n-20) +840498484196142157282*a(n-21) +916384031000272502483*a(n-22) -9845082428329251211691*a(n-23) -6016933384854016482191*a(n-24) +87046691773894743965995*a(n-25) +16506532983186629885712*a(n-26) -577708743419280155566196*a(n-27) +102545537608076934065720*a(n-28) +2848105707728875656134320*a(n-29) -1420943113881058105179728*a(n-30) -10266478217935997937195568*a(n-31) +8108352473723924431189440*a(n-32) +26440090514847724314464896*a(n-33) -28464279031138243673860480*a(n-34) -46909045122105869545522432*a(n-35) +66285560137496698142873088*a(n-36) +53415327170976436737520640*a(n-37) -104163556602047849986117632*a(n-38) -31587777756467834943909888*a(n-39) +109668430733532983049977856*a(n-40) -3029603155771712576831488*a(n-41) -75217066867710671165587456*a(n-42) +20382690388795535114305536*a(n-43) +31600918578055691874074624*a(n-44) -15489979745338580178567168*a(n-45) -6989570885483605099806720*a(n-46) +5659474647585127124697088*a(n-47) +354797816445786531037184*a(n-48) -1043254580141108972486656*a(n-49) +147223759580890837024768*a(n-50) +80606129369956910891008*a(n-51) -24620331993992974565376*a(n-52) -411969093335261380608*a(n-53) +908540121022357045248*a(n-54) -106315700332809682944*a(n-55) +2856402153784737792*a(n-56) for n>61
Showing 1-10 of 12 results. Next