A223721 Number of nX4 0..2 arrays with rows, antidiagonals and columns unimodal.
46, 2116, 46613, 608855, 5537147, 38566854, 218619076, 1051051942, 4413826871, 16548850432, 56334327215, 176427795883, 513754867486, 1403147317562, 3620163947216, 8876634938318, 20791393840502, 46723393566999
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..1..2....1..2..2..1....1..1..0..0....1..2..0..0....0..0..1..2 ..0..1..2..2....0..2..2..2....1..1..1..0....1..2..2..1....0..1..2..2 ..0..1..2..2....0..0..2..0....0..1..2..0....2..1..1..0....2..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (456419/5230697472000)*n^16 + (299363/186810624000)*n^15 + (8437981/261534873600)*n^14 + (678959/1868106240)*n^13 + (91942579/28740096000)*n^12 + (161673031/7185024000)*n^11 + (203867119/1828915200)*n^10 + (37055/81648)*n^9 + (59612358509/36578304000)*n^8 + (2850286193/1306368000)*n^7 + (7237625987/718502400)*n^6 + (573765127/143700480)*n^5 - (109277252779/4036032000)*n^4 + (59181202013/216216000)*n^3 - (12927784033/16816800)*n^2 + (36815651/36036)*n - 470 for n>2
Comments