A223728 Multiplicities for A223727: primitive sums of four distinct nonzero squares.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 5, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 4, 2, 1, 2, 3, 1, 5, 2, 2, 2, 2, 2, 4, 3, 1, 4, 1, 1, 4, 2, 2, 2, 5, 3, 1, 6, 3, 3, 1, 2, 1, 1, 4, 4, 2, 5, 1, 3, 7, 3, 2
Offset: 1
Keywords
Examples
a(16) = 3 because A223727(16) = 78 has three s-quadruples, namely [1, 2, 3, 8], [1, 4, 5, 6] and [2, 3, 4, 7]. a(23) = 2 from A223727(23) = 90 with s-quadruples [1, 2, 6, 7] and [1, 3, 4, 8].
Formula
a(n) = k if there are k different solutions for A223728(n) = sum(s(j)^2, j=1..4), with 0 < s(1) < s(2) < s(3) < s(4) and gcd(s(1),s(2),s(3),s(4)) = 1.
Comments