A223739 Number of nX5 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.
86, 7396, 237088, 3868968, 41586328, 340038574, 2289596121, 13281578167, 68222609208, 316008418514, 1337293881157, 5222063556941, 18967899632349, 64513878383831, 206644044321249, 626458582331341, 1805406612393872
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..2..0..0....0..0..1..2..2....0..0..1..2..0....0..0..1..1..1 ..0..0..2..2..2....1..2..2..2..0....0..0..2..2..2....0..0..2..1..0 ..0..1..2..1..1....1..1..2..0..0....0..0..0..1..1....0..0..2..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..136
Formula
Empirical: a(n) = (63370093/405483668029440000)*n^20 - (268330757/121645100408832000)*n^19 + (13774799/121949975347200)*n^18 - (2424889373/2134124568576000)*n^17 + (18925169/1107025920000)*n^16 + (11462071/62705664000)*n^15 - (29544684331/5021469573120)*n^14 + (20545808232973/188305108992000)*n^13 - (12540957049199/13795246080000)*n^12 + (41582497189459/9656672256000)*n^11 - (2781361848649/61312204800)*n^10 + (2584592276085773/1379524608000)*n^9 - (6240419528063566523/156920924160000)*n^8 + (23876233435912776007/47076277248000)*n^7 - (1929147516259295957/448345497600)*n^6 + (5962644577920598223/237758976000)*n^5 - (66236190322655654183/661620960000)*n^4 + (14575286592197809/53856000)*n^3 - (12552295491184305071/24443218800)*n^2 + (15114021973648951/19399380)*n - 808791295 for n>11
Comments