cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223740 Number of nX6 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.

This page as a plain text file.
%I A223740 #6 Jul 23 2025 04:26:40
%S A223740 148,21904,1082738,24527068,340038574,3437215802,28017383049,
%T A223740 195114520747,1200776938428,6667000031694,33855136108849,
%U A223740 158770607250059,692749181797191,2828862453161793,10864955922680147,39417487036715031
%N A223740 Number of nX6 0..2 arrays with rows, columns, diagonals and antidiagonals unimodal.
%C A223740 Column 6 of A223742
%H A223740 R. H. Hardin, <a href="/A223740/b223740.txt">Table of n, a(n) for n = 1..44</a>
%F A223740 Empirical: a(n) = (114400861/793412278431252480000)*n^24 - (51075794587/8617338912961658880000)*n^23 + (1980369833107/6744004366665646080000)*n^22 - (10175245261/1277273554292736000)*n^21 + (1636653578471/10304055564042240000)*n^20 + (1969068275129/14597412049059840000)*n^19 - (992154752050453/8066990869217280000)*n^18 + (146561615547371/29877743960064000)*n^17 - (419840704716587677/3796230997278720000)*n^16 + (43611886853741881/28759325736960000)*n^15 - (426135162517318237/60872508702720000)*n^14 - (1461996088631538851/6214068596736000)*n^13 + (341585746531181711516743/41758540970065920000)*n^12 - (18495577502515890115483/105450861035520000)*n^11 + (3017647739520402646603697/949057749319680000)*n^10 - (787602150530565904976843/15817629155328000)*n^9 + (21676051131880174432691909/33894919618560000)*n^8 - (307946068460663534824170109/48017802792960000)*n^7 + (103203788635493619721225240009/2128789257154560000)*n^6 - (864678379682656262490199981/3225438268416000)*n^5 + (10065213443478593696277188029/9565638001920000)*n^4 - (7780601713723052220368499439/2710264100544000)*n^3 + (755525652858782115616121/134437703400)*n^2 - (7954542427408468560391/892371480)*n + 10219818700267 for n>18
%e A223740 Some solutions for n=3
%e A223740 ..0..0..0..1..1..2....0..0..0..2..1..0....0..0..1..1..0..0....0..0..0..0..0..0
%e A223740 ..0..0..0..1..2..2....0..0..1..2..1..1....0..0..1..1..2..0....0..0..2..2..2..2
%e A223740 ..0..0..1..1..1..1....0..0..1..1..1..0....0..0..0..1..2..2....2..2..1..1..0..0
%K A223740 nonn
%O A223740 1,1
%A A223740 _R. H. Hardin_ Mar 26 2013