cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223759 Number of nX5 0..3 arrays with rows, antidiagonals and columns unimodal.

This page as a plain text file.
%I A223759 #6 Jul 23 2025 04:28:36
%S A223759 296,87616,9478535,499583168,15947472102,350182483445,5733827943118,
%T A223759 73972033945807,782389879664731,6990377642784235,54000675009376965,
%U A223759 367428839857095864,2235505630899285226,12314718611480572990
%N A223759 Number of nX5 0..3 arrays with rows, antidiagonals and columns unimodal.
%C A223759 Column 5 of A223762
%H A223759 R. H. Hardin, <a href="/A223759/b223759.txt">Table of n, a(n) for n = 1..77</a>
%F A223759 Empirical: a(n) = (12185409283/15043832793341144432640000000)*n^30 + (27923308904923/552610124608731372158976000000)*n^29 + (17202351123943/7559215155662327119872000000)*n^28 + (83889482659651/1146196784254563385344000000)*n^27 + (131580424853251541/72592463002789014405120000000)*n^26 + (91300610653453/2481793606932957757440000)*n^25 + (2869131224226844253/4690589917103290161561600000)*n^24 + (6733459014124696993/781764986183881693593600000)*n^23 + (105395815298504753443/1019693460239845687296000000)*n^22 + (470586110891157493/441425740363569561600000)*n^21 + (92313858824481506713/9711366287998530355200000)*n^20 + (40366817013100567291/539520349333251686400000)*n^19 + (2857208469478310355787/5765991728193994752000000)*n^18 + (73804544320284819569293/23256166637049112166400000)*n^17 + (105623541268201591322087/8208058813076157235200000)*n^16 + (20778860285663090466941/195429971739908505600000)*n^15 - (4122006232669364727200509/33223095195784445952000000)*n^14 + (14082517009271704071311/3155089762182758400000)*n^13 - (182553094899048464076429353/8050211528209308057600000)*n^12 + (351832338444643788138816403/2317485136908740198400000)*n^11 - (636192073310304596009591323513/955962618974855331840000000)*n^10 + (673686037713545840541517207/239589628815753216000000)*n^9 - (507622569326119951528072091/48071931952472064000000)*n^8 + (33298798403375782384332287329/969450627708186624000000)*n^7 - (2608160997837482966479278684073/36758336300602076160000000)*n^6 + (3318743520542516326928702347/122527787668673587200000)*n^5 + (519721318997776322417985167/6126389383433679360000)*n^4 + (8189409887763024441897379/7293320694563904000)*n^3 - (52484216692264826985673/9647249595984000)*n^2 + (2840122633336908109/465817912560)*n + 2746822 for n>5
%e A223759 Some solutions for n=3
%e A223759 ..0..0..1..2..1....0..0..0..2..1....0..2..1..1..1....0..2..3..1..1
%e A223759 ..0..0..2..3..1....0..0..2..2..3....0..0..0..3..2....0..0..2..3..3
%e A223759 ..0..1..3..1..1....0..2..3..1..1....0..0..0..3..0....0..0..2..2..0
%K A223759 nonn
%O A223759 1,1
%A A223759 _R. H. Hardin_ Mar 27 2013