A223764 Number of n X 2 0..1 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.
4, 12, 28, 56, 101, 169, 267, 403, 586, 826, 1134, 1522, 2003, 2591, 3301, 4149, 5152, 6328, 7696, 9276, 11089, 13157, 15503, 18151, 21126, 24454, 28162, 32278, 36831, 41851, 47369, 53417, 60028, 67236, 75076, 83584, 92797, 102753, 113491, 125051
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0....0..0....0..0....1..0....1..1....0..0....0..1....0..1....0..0....0..1 ..0..0....0..0....1..1....0..1....0..1....1..0....1..1....0..0....1..0....0..1 ..1..1....0..1....1..1....0..0....0..1....0..1....0..1....0..0....1..1....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223770.
Formula
Empirical: a(n) = (1/24)*n^4 + (1/4)*n^3 + (35/24)*n^2 + (5/4)*n + 1.
Conjectures from Colin Barker, Feb 21 2018: (Start)
G.f.: x*(2 - 2*x + x^2)^2 / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments