A223765 Number of n X 3 0..1 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.
7, 28, 71, 155, 317, 607, 1097, 1887, 3112, 4950, 7631, 11447, 16763, 24029, 33793, 46715, 63582, 85324, 113031, 147971, 191609, 245627, 311945, 392743, 490484, 607938, 748207, 914751, 1111415, 1342457, 1612577, 1926947, 2291242, 2711672
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....1..1..0....1..1..0 ..0..0..0....1..0..0....0..0..1....0..1..1....0..1..1....0..1..1....1..1..1 ..1..0..0....1..1..1....1..1..0....0..0..1....1..1..1....0..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223770.
Formula
Empirical: a(n) = (1/720)*n^6 + (1/240)*n^5 + (41/144)*n^4 - (13/48)*n^3 + (2237/360)*n^2 - (217/30)*n + 19 for n>2.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(7 - 21*x + 22*x^2 + x^3 - 12*x^4 - 9*x^5 + 26*x^6 - 17*x^7 + 4*x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)
Comments