cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223766 Number of n X 4 0..1 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.

Original entry on oeis.org

11, 56, 155, 361, 782, 1601, 3141, 5907, 10678, 18618, 31422, 51505, 82243, 128276, 195884, 293448, 432009, 625939, 893739, 1258980, 1751404, 2408203, 3275495, 4410017, 5881056, 7772640, 10186012, 13242411, 17086185, 21888262, 27850006
Offset: 1

Views

Author

R. H. Hardin, Mar 27 2013

Keywords

Comments

Column 4 of A223770.

Examples

			Some solutions for n=3:
..1..1..1..0....0..0..1..1....0..0..1..0....1..0..0..0....0..1..1..0
..0..1..1..1....0..1..1..1....1..1..1..1....0..1..0..0....0..1..1..1
..0..1..1..1....1..1..1..1....1..1..1..1....0..0..1..1....0..0..1..1
		

Crossrefs

Cf. A223770.

Formula

Empirical: a(n) = (1/40320)*n^8 - (1/10080)*n^7 + (3/320)*n^6 + (1/45)*n^5 + (1109/1920)*n^4 - (4837/1440)*n^3 + (422483/10080)*n^2 - (109337/840)*n + 226 for n>4.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(11 - 43*x + 47*x^2 + 58*x^3 - 205*x^4 + 209*x^5 - 42*x^6 - 150*x^7 + 256*x^8 - 245*x^9 + 151*x^10 - 55*x^11 + 9*x^12) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>13.
(End)