cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223769 Number of nX7 0..1 arrays with rows, columns and antidiagonals unimodal and diagonals nondecreasing.

Original entry on oeis.org

29, 267, 1097, 3141, 7564, 16742, 35513, 73427, 149053, 297518, 583860, 1125118, 2126567, 3939287, 7150127, 12719513, 22189580, 37994506, 63918056, 105761409, 172308985, 276713314, 438464653, 686170386, 1061447357, 1624332246
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Column 7 of A223770

Examples

			Some solutions for n=3
..1..0..0..0..0..0..0....0..1..1..0..0..0..0....0..1..1..0..0..0..0
..1..1..1..0..0..0..0....0..1..1..1..0..0..0....0..1..1..1..0..0..0
..1..1..1..1..1..0..0....0..0..1..1..1..0..0....1..1..1..1..1..0..0
		

Formula

Empirical: a(n) = (1/87178291200)*n^14 - (1/1779148800)*n^13 + (1/38320128)*n^12 - (127/191600640)*n^11 + (311/12441600)*n^10 - (2021/3225600)*n^9 + (2304587/121927680)*n^8 - (6921119/17418240)*n^7 + (278861369/43545600)*n^6 - (1599083081/21772800)*n^5 + (2209531079/3421440)*n^4 - (4215012997/997920)*n^3 + (3157078175059/151351200)*n^2 - (25129653953/360360)*n + 120027 for n>10