A223774 Number of n X 5 0..1 arrays with rows and columns unimodal and antidiagonals nondecreasing.
16, 101, 371, 1040, 2516, 5573, 11635, 23230, 44703, 83305, 150815, 265901, 457485, 769447, 1267085, 2045843, 3242928, 5052561, 7745747, 11695606, 17409482, 25569241, 37081383, 53138828, 75296493, 105563057, 146511615, 201412251
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..0..0..0..0....1..0..0..0..0....1..0..0..0..0....0..0..0..0..0 ..1..0..0..0..0....1..0..0..0..0....0..0..0..0..1....0..0..0..0..0 ..0..0..0..0..1....0..0..1..1..1....0..0..0..1..0....0..0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A223777.
Formula
Empirical: a(n) = (1/3628800)*n^10 + (1/241920)*n^9 + (1/8640)*n^8 + (11/8064)*n^7 + (4273/172800)*n^6 + (589/11520)*n^5 + (649763/362880)*n^4 + (589/12096)*n^3 + (102443/2400)*n^2 - (16061/168)*n + 93 for n>2.
Conjectures from Colin Barker, Aug 23 2018: (Start)
G.f.: x*(16 - 75*x + 140*x^2 - 126*x^3 + 96*x^4 - 180*x^5 + 272*x^6 - 200*x^7 + 65*x^8 - 20*x^9 + 27*x^10 - 18*x^11 + 4*x^12) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>13.
(End)
Comments