cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223785 Number of nX4 0..2 arrays with rows, diagonals and antidiagonals unimodal.

This page as a plain text file.
%I A223785 #6 Jul 23 2025 04:30:36
%S A223785 46,2116,62365,1560013,39387861,1026135371,27088106846,715394830136,
%T A223785 18858304684055,496722962933967,13083748459268997,344674592599166771,
%U A223785 9080493561769780564,239226142956291614446,6302367997324565980625
%N A223785 Number of nX4 0..2 arrays with rows, diagonals and antidiagonals unimodal.
%C A223785 Column 4 of A223789
%H A223785 R. H. Hardin, <a href="/A223785/b223785.txt">Table of n, a(n) for n = 1..210</a>
%F A223785 Empirical: a(n) = 36*a(n-1) -189*a(n-2) -3541*a(n-3) +59127*a(n-4) -226113*a(n-5) -2332737*a(n-6) +9857697*a(n-7) +99543550*a(n-8) +95675691*a(n-9) -5724165128*a(n-10) +5396730978*a(n-11) +117801963183*a(n-12) +48822212002*a(n-13) -4050581859555*a(n-14) -9385185579247*a(n-15) +93974968759615*a(n-16) +418814395559996*a(n-17) -398631629899971*a(n-18) -8857200756180654*a(n-19) -17297999616825626*a(n-20) +61168241169556772*a(n-21) +315463283515803651*a(n-22) +213887059257798310*a(n-23) -1903664148042753413*a(n-24) -3584708139929595584*a(n-25) +1714913055484581266*a(n-26) +11096777221831756444*a(n-27) -7609600734685922241*a(n-28) -49783583957613699145*a(n-29) +229513376763785174005*a(n-30) +180988649676924655797*a(n-31) -501542105212285553370*a(n-32) -325246768938962167438*a(n-33) +1501252528314140198120*a(n-34) +5802160737866727525882*a(n-35) -16205743701771553347998*a(n-36) -12947461293194280857390*a(n-37) -36099351841893292475137*a(n-38) +81150506478189926731033*a(n-39) +315683614302924768396043*a(n-40) -678254108759024930127839*a(n-41) -174717381067845210519994*a(n-42) +1334495710753290909569152*a(n-43) +221178153601308790024930*a(n-44) -483252100375673175449627*a(n-45) -2714447412869195417032469*a(n-46) +1574170270974397211830313*a(n-47) +753869711211526732155023*a(n-48) -5395070252732438366552504*a(n-49) +4757066470991903272143408*a(n-50) +8876390245281412619998437*a(n-51) -1877127082673826201189221*a(n-52) -12865570823541965542911108*a(n-53) +2207607579231775223357612*a(n-54) +13699987590118569137971332*a(n-55) -9938636241626662896298108*a(n-56) -16701218412807619111473012*a(n-57) +8284692714173402914397700*a(n-58) +16110317416374339328207960*a(n-59) -4384172067171970298981184*a(n-60) -6240892805930542467867088*a(n-61) +6453778250708127079582832*a(n-62) +1554531273179700190700896*a(n-63) -3413324636388770330606720*a(n-64) -34723774750877869086976*a(n-65) -189654079977746620978816*a(n-66) -1002029019037833715250176*a(n-67) -163481539387725950018304*a(n-68) +145241176478505601837056*a(n-69) +105485623837957432606720*a(n-70) +101928363962749438431232*a(n-71) +53672511863761575182336*a(n-72) +11193681570052043833344*a(n-73) +225784053502893359104*a(n-74) -316491621666724773888*a(n-75) -131089967696959242240*a(n-76) -46043707372770164736*a(n-77) -9232452487045185536*a(n-78) -858153604115070976*a(n-79) -26310763496865792*a(n-80)
%e A223785 Some solutions for n=3
%e A223785 ..0..0..2..1....1..2..1..1....0..1..2..1....0..2..2..0....0..1..1..1
%e A223785 ..1..2..2..1....0..1..2..1....2..1..1..0....0..0..1..0....0..2..2..0
%e A223785 ..0..2..1..0....0..1..1..1....1..2..2..2....0..2..1..1....0..0..0..0
%K A223785 nonn
%O A223785 1,1
%A A223785 _R. H. Hardin_ Mar 27 2013