A223791 Number of 4Xn 0..2 arrays with rows, diagonals and antidiagonals unimodal.
81, 6561, 151580, 1560013, 11012718, 61333566, 288823579, 1196519547, 4468789562, 15293854291, 48524120300, 143996244303, 402491787780, 1065874328092, 2687501352957, 6479586585575, 14994608609716, 33416226803133
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..1..1....0..1..0....1..1..0....0..1..2....0..2..0....0..0..1....1..2..0 ..0..2..0....0..2..0....2..2..2....2..1..0....0..1..1....1..0..0....0..1..1 ..2..1..0....0..0..2....0..2..2....1..1..0....0..1..2....0..1..0....1..2..0 ..1..1..0....0..1..0....1..2..1....1..2..1....2..2..1....0..2..1....1..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (456419/5230697472000)*n^16 + (165527/653837184000)*n^15 + (1160527/37362124800)*n^14 + (4098907/18681062400)*n^13 - (2323961/28740096000)*n^12 + (686821469/7185024000)*n^11 - (1282316951/1828915200)*n^10 + (6465409549/914457600)*n^9 + (69811138547/5225472000)*n^8 - (199799815457/326592000)*n^7 + (10755338490607/1437004800)*n^6 - (18136370082679/359251200)*n^5 + (23466839810116957/108972864000)*n^4 - (2416825957955693/4540536000)*n^3 + (2240986165151/4324320)*n^2 + (7139372965/18018)*n - 659081 for n>8
Comments