cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223791 Number of 4Xn 0..2 arrays with rows, diagonals and antidiagonals unimodal.

Original entry on oeis.org

81, 6561, 151580, 1560013, 11012718, 61333566, 288823579, 1196519547, 4468789562, 15293854291, 48524120300, 143996244303, 402491787780, 1065874328092, 2687501352957, 6479586585575, 14994608609716, 33416226803133
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Row 4 of A223789

Examples

			Some solutions for n=3
..1..1..1....0..1..0....1..1..0....0..1..2....0..2..0....0..0..1....1..2..0
..0..2..0....0..2..0....2..2..2....2..1..0....0..1..1....1..0..0....0..1..1
..2..1..0....0..0..2....0..2..2....1..1..0....0..1..2....0..1..0....1..2..0
..1..1..0....0..1..0....1..2..1....1..2..1....2..2..1....0..2..1....1..1..2
		

Formula

Empirical: a(n) = (456419/5230697472000)*n^16 + (165527/653837184000)*n^15 + (1160527/37362124800)*n^14 + (4098907/18681062400)*n^13 - (2323961/28740096000)*n^12 + (686821469/7185024000)*n^11 - (1282316951/1828915200)*n^10 + (6465409549/914457600)*n^9 + (69811138547/5225472000)*n^8 - (199799815457/326592000)*n^7 + (10755338490607/1437004800)*n^6 - (18136370082679/359251200)*n^5 + (23466839810116957/108972864000)*n^4 - (2416825957955693/4540536000)*n^3 + (2240986165151/4324320)*n^2 + (7139372965/18018)*n - 659081 for n>8