cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223792 Number of 5Xn 0..2 arrays with rows, diagonals and antidiagonals unimodal.

This page as a plain text file.
%I A223792 #6 Jul 23 2025 04:31:17
%S A223792 243,59049,2703137,39387861,343454446,2226551034,11992802966,
%T A223792 57005353680,246381084601,983376748824,3659208824870,12782748762891,
%U A223792 42154099154095,131837732493171,392589737558511,1116957062770205,3045559149318525
%N A223792 Number of 5Xn 0..2 arrays with rows, diagonals and antidiagonals unimodal.
%C A223792 Row 5 of A223789
%H A223792 R. H. Hardin, <a href="/A223792/b223792.txt">Table of n, a(n) for n = 1..103</a>
%F A223792 Empirical: a(n) = (63370093/405483668029440000)*n^20 - (268330757/121645100408832000)*n^19 + (43030249/328326856704000)*n^18 - (5473141/17072996548608)*n^17 - (2435352473/69742632960000)*n^16 + (170082680039/62768369664000)*n^15 - (9040480367419/125536739328000)*n^14 + (52864434956213/37661021798400)*n^13 - (1853752694469833/96566722560000)*n^12 + (2309334348058723/9656672256000)*n^11 - (7549354911696211/2145927168000)*n^10 + (117446496741518107/1931334451200)*n^9 - (140966223776288630033/156920924160000)*n^8 + (91382436096707306951/9415255449600)*n^7 - (86620685132489250907/1207084032000)*n^6 + (58712885643301237303/174356582400)*n^5 - (288444549825617915291/343062720000)*n^4 + (167215711426064855461/308756448000)*n^3 - (1138388070473741029/24443218800)*n^2 + (154082848393578809/16628040)*n - 14652081349 for n>15
%e A223792 Some solutions for n=3
%e A223792 ..0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....0..0..1....0..0..0
%e A223792 ..2..0..0....2..0..0....0..0..2....0..1..0....1..1..1....0..1..0....1..0..0
%e A223792 ..0..2..2....0..1..1....0..0..0....0..1..0....0..1..1....0..1..1....0..1..1
%e A223792 ..1..2..0....0..1..0....0..0..2....0..2..0....0..1..2....0..2..2....1..1..1
%e A223792 ..0..1..1....2..1..0....1..2..2....2..2..2....1..2..0....0..2..0....0..0..0
%K A223792 nonn
%O A223792 1,1
%A A223792 _R. H. Hardin_ Mar 27 2013