cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223803 Number of 4Xn 0..3 arrays with rows and antidiagonals unimodal.

This page as a plain text file.
%I A223803 #6 Jul 23 2025 04:32:27
%S A223803 256,65536,4816168,151310069,2844578252,37217420249,370255807510,
%T A223803 2967702264487,19953618004020,115901407902175,594677748128499,
%U A223803 2742258352954012,11522283571283326,44607717280309708,160585424830894289
%N A223803 Number of 4Xn 0..3 arrays with rows and antidiagonals unimodal.
%C A223803 Row 4 of A223801
%H A223803 R. H. Hardin, <a href="/A223803/b223803.txt">Table of n, a(n) for n = 1..210</a>
%F A223803 Empirical: a(n) = (1224989653/34469355651846635520000)*n^24 + (1274345773/470036667979726848000)*n^23 + (89684176061/749333818518405120000)*n^22 + (92332596599/25545471085854720000)*n^21 + (3678754549/45368802017280000)*n^20 + (80494587659/57244753133568000)*n^19 + (1442890795373/74694359900160000)*n^18 + (17944065812311/84031154887680000)*n^17 + (808497136964749/421803444142080000)*n^16 + (887979405310979/63270516621312000)*n^15 + (712542665498819/8497871585280000)*n^14 + (511835344841201/1255367393280000)*n^13 + (2484047083210032763/1546612628520960000)*n^12 + (29342532497594837/5751865147392000)*n^11 + (124717183755287231/9586441912320000)*n^10 + (524203224847641397/19772036444160000)*n^9 + (23382114961946647/547211427840000)*n^8 + (33110696329013011/640237370572800)*n^7 + (78034921690145238953/2128789257154560000)*n^6 - (394245218967404573/9855505820160000)*n^5 - (11421559789359613027/81307923016320000)*n^4 - (57003741297203/301945644000)*n^3 + (2875733400346871/11416863427200)*n^2 + (225454400125/1070845776)*n - 15
%e A223803 Some solutions for n=3
%e A223803 ..0..0..0....0..0..2....0..0..0....0..0..2....0..0..2....0..0..0....0..0..2
%e A223803 ..0..0..3....0..2..3....2..2..1....0..2..3....1..2..0....1..2..0....1..2..0
%e A223803 ..0..1..0....0..3..0....1..2..0....1..3..1....3..2..0....0..3..0....2..3..2
%e A223803 ..1..2..2....3..0..0....0..3..3....0..0..3....0..3..3....1..1..3....3..3..3
%K A223803 nonn
%O A223803 1,1
%A A223803 _R. H. Hardin_ Mar 27 2013