cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223804 Number of 5Xn 0..3 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

1024, 1048576, 210163664, 13602542576, 453578376041, 9658691177678, 147492079608804, 1738265364563074, 16624933432537046, 133772722680020893, 930338345848608947, 5709392263061431701, 31428574139042436485
Offset: 1

Views

Author

R. H. Hardin Mar 27 2013

Keywords

Comments

Row 5 of A223801

Examples

			Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..2..0....0..0..0....0..0..0....0..0..0....0..2..0....0..2..0
..2..2..1....1..2..0....0..0..0....1..0..0....2..0..0....3..2..2....0..2..1
..3..1..1....1..3..2....2..3..2....3..3..0....0..2..1....2..2..2....1..3..3
..1..2..0....3..1..0....1..3..2....3..0..0....3..1..1....1..1..1....2..2..1
		

Formula

Empirical: a(n) = (12185409283/15043832793341144432640000000)*n^30 + (76296730104643/884176199373970195454361600000)*n^29 + (371907650782571/65333216702510112964608000000)*n^28 + (1151102366842559/4355547780167340864307200000)*n^27 + (338234821790386273/36296231501394507202560000000)*n^26 + (357033935267827/1378774226073865420800000)*n^25 + (13631151365462522107/2345294958551645080780800000)*n^24 + (16740679506000614867/156352997236776338718720000)*n^23 + (119233024700630228357/72835247159988977664000000)*n^22 + (263813261261433287/12612164010387701760000)*n^21 + (64065941370817311811/285628420235250892800000)*n^20 + (8076987180619121371/3996447032098160640000)*n^19 + (5334961705848505741485791/348842499555736682496000000)*n^18 + (450858411768010052623451/4651233327409822433280000)*n^17 + (300491370965924162197759/586289915219725516800000)*n^16 + (17563968862511001347771/7817198869596340224000)*n^15 + (134531017813019228073534643/16611547597892222976000000)*n^14 + (33668222196298965216433/1419790392982241280000)*n^13 + (224429158876824166363763453/4025105764104654028800000)*n^12 + (12074189473194325363982201/115874256845437009920000)*n^11 + (10894534329021783625843566583/68283044212489666560000000)*n^10 + (44842282464981860911345889/227610147374965555200000)*n^9 + (500341840567104079760229311/2908351883124559872000000)*n^8 - (6956889324683760951709681/12118132846352332800000)*n^7 - (22335181829123680152688619197/9189584075150519040000000)*n^6 - (486619909336332713379638689/61263893834336793600000)*n^5 - (1635897124538888506513/525329221697280000)*n^4 - (35225574821544661546673/7293320694563904000)*n^3 + (382682859390107193527/9647249595984000)*n^2 - (11221241883754589/465817912560)*n - 377 for n>2