cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223805 Number of 6Xn 0..3 arrays with rows and antidiagonals unimodal.

This page as a plain text file.
%I A223805 #6 Jul 23 2025 04:32:39
%S A223805 4096,16777216,9169032476,1216562667529,70950413903439,
%T A223805 2401987689157097,54863639440148543,926152518399324838,
%U A223805 12281305845727356247,133569446404885491509,1229947638993873947499,9824466906501135882300
%N A223805 Number of 6Xn 0..3 arrays with rows and antidiagonals unimodal.
%C A223805 Row 6 of A223801
%H A223805 R. H. Hardin, <a href="/A223805/b223805.txt">Table of n, a(n) for n = 1..53</a>
%F A223805 Empirical: a(n) = (94871989966071037/12399777559663373915599981605027840000000)*n^36 + (23494487319688423/21753995718707673536140318605312000000)*n^35 + (19815461219045083483/196821866026402760565079073095680000000)*n^34 + (387946863583945231/57888784125412576636787962675200000)*n^33 + (1177484665113344641/3432141351309046045659365376000000)*n^32 + (615940986658681/43992616415246567217089740800)*n^31 + (249926773655883881424689/534749765381377174210797895680000000)*n^30 + (4630069145782751496907/356499843587584782807198597120000)*n^29 + (178133742871226319480781/585385621654490612162887680000000)*n^28 + (6962809860198885640273/1147814944420569827770368000000)*n^27 + (666626499383242550268556343/6439241838199396733791764480000000)*n^26 + (522351494242690781724431/343976593920907945181184000000)*n^25 + (259385049672212475250399091383/13522407860218733140962705408000000)*n^24 + (94069937609216051584228677343/450746928673957771365423513600000)*n^23 + (150606744114958980477692573/77125905356322873802752000000)*n^22 + (60407333375536982936116523/3856295267816143690137600000)*n^21 + (18552609924642994134467759158073/173070531619588528813375488000000)*n^20 + (398421495171448567208594349137/641001968961438995605094400000)*n^19 + (32999625284514089244451420058951999/10903443492034077315242655744000000)*n^18 + (3444424661623804094160490174561/281306591641746060764774400000)*n^17 + (813052700533005951081065902821133/19997645460246573707427840000000)*n^16 + (95627195506301062688987740160173/874896988885787599699968000000)*n^15 + (283794291443517721003321123962583391/1207357844662386887585955840000000)*n^14 + (20165452979436273060452527083533/51596489088136191777177600000)*n^13 + (65311515436625900041815166858211147/115247794263227839269568512000000)*n^12 + (2590786840107227108334729278011/10271639417399985674649600000)*n^11 + (330914440339976752306544596432769/198840224746769909022720000000)*n^10 - (36168405113352687550265305231771/2540736205097615504179200000)*n^9 - (4359271111022264447540327478101011/1228022499130514160353280000000)*n^8 - (1695820430249495689620665968078387/5116760413043809001472000000)*n^7 + (7268239430782963931795377473941916839/30534267764838930216284160000000)*n^6 - (139344733258938107220685649337424153/63613057843414437950592000000)*n^5 + (47437635676535991526724411394898871/8239405587337489105981440000)*n^4 - (238200143499847388140289435527/18790835585060867328000)*n^3 + (14071590518507157155692107883/589755662301693888000)*n^2 - (635163845155509650059/16044839210400)*n + 20888560 for n>3
%e A223805 Some solutions for n=3
%e A223805 ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e A223805 ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e A223805 ..0..0..0....0..2..0....0..2..0....0..0..0....0..2..0....0..0..0....0..0..0
%e A223805 ..3..2..1....1..2..3....1..2..1....0..0..3....0..2..2....1..2..1....2..2..2
%e A223805 ..0..2..3....1..2..3....3..2..0....3..3..3....1..3..3....1..1..2....1..2..0
%e A223805 ..0..0..1....1..2..1....1..3..1....2..2..3....3..3..0....1..1..0....0..1..3
%K A223805 nonn
%O A223805 1,1
%A A223805 _R. H. Hardin_ Mar 27 2013