cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223808 Number of nX4 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.

This page as a plain text file.
%I A223808 #6 Jul 23 2025 04:32:56
%S A223808 130,16900,825896,20847008,342521725,4146732319,39816673636,
%T A223808 317796753758,2176384736806,13081738670880,70201100137308,
%U A223808 340874317119700,1514107865155566,6208541401894070,23684173752732531,84617914222910737
%N A223808 Number of nX4 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.
%C A223808 Column 4 of A223811
%H A223808 R. H. Hardin, <a href="/A223808/b223808.txt">Table of n, a(n) for n = 1..210</a>
%F A223808 Empirical: a(n) = (1224989653/34469355651846635520000)*n^24 + (9790897789/8617338912961658880000)*n^23 + (17368054339/449600291111043072000)*n^22 + (6343785587/8515157028618240000)*n^21 + (742042863307/58389648196239360000)*n^20 + (874268046919/4865804016353280000)*n^19 + (340257615613/179266463760384000)*n^18 + (9655773652423/448166159400960000)*n^17 + (216017366507863/1265410332426240000)*n^16 + (127305463223041/105450861035520000)*n^15 + (2176033515218659/198850195095552000)*n^14 + (1092716136330817/41427123978240000)*n^13 + (121113866805425089/515537542840320000)*n^12 + (342583305621940841/105450861035520000)*n^11 - (2450919674438782711/63270516621312000)*n^10 + (11061596378517660259/26362715258880000)*n^9 - (547858838894740099247/192071211171840000)*n^8 + (217452379672611043021/16005934264320000)*n^7 - (15434864255601855529021/425757851430912000)*n^6 - (981113327920619121617/59133034920960000)*n^5 + (97554150097562928884627/162615846032640000)*n^4 - (2213625571607144902901/903421366848000)*n^3 + (32215709819070912077/7420961227680)*n^2 - (118869402789119/74364290)*n - 3422935 for n>8
%e A223808 Some solutions for n=3
%e A223808 ..0..0..2..3....0..0..3..0....0..1..2..0....0..0..3..0....1..1..1..2
%e A223808 ..0..1..1..3....0..2..3..0....1..2..2..2....0..1..3..2....1..2..2..2
%e A223808 ..0..0..1..1....1..1..1..3....0..0..3..0....0..3..3..2....0..3..3..1
%K A223808 nonn
%O A223808 1,1
%A A223808 _R. H. Hardin_ Mar 27 2013