cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223809 Number of nX5 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.

This page as a plain text file.
%I A223809 #6 Jul 23 2025 04:33:02
%S A223809 296,87616,8165133,342521725,8597979566,151474085262,2058985931297,
%T A223809 22901512677629,216485354275124,1784167200609912,13053474850518508,
%U A223809 85927775923343738,514305111112459789,2823064297778339125
%N A223809 Number of nX5 0..3 arrays with rows, columns, diagonals and antidiagonals unimodal.
%C A223809 Column 5 of A223811
%H A223809 R. H. Hardin, <a href="/A223809/b223809.txt">Table of n, a(n) for n = 1..55</a>
%F A223809 Empirical: a(n) = (12185409283/15043832793341144432640000000)*n^30 + (65289291955553/4420880996869850977271808000000)*n^29 + (21718473047041/19884022474676990902272000000)*n^28 + (2120108278451/127355198250507042816000000)*n^27 + (15561105953549293/36296231501394507202560000000)*n^26 + (289358623979/26564081706860544000000)*n^25 + (46195046293174813/2345294958551645080780800000)*n^24 + (2895943411744833937/781764986183881693593600000)*n^23 - (1934558843887147381/509846730119922843648000000)*n^22 + (48760416035116711/147141913454523187200000)*n^21 + (21826875298852452953/4855683143999265177600000)*n^20 - (156850672232660797/13601353344535756800000)*n^19 - (81113944137104012165989/348842499555736682496000000)*n^18 + (24830083604445741151639/930246665481964486656000)*n^17 - (2812142506870759694352953/4104029406538078617600000)*n^16 + (97155764191026540631493/5922120355754803200000)*n^15 - (6012916017623459423535490877/16611547597892222976000000)*n^14 + (42676596532256238158237909/6084815969923891200000)*n^13 - (451076788569987755746145023843/4025105764104654028800000)*n^12 + (1675232798260911600311989982501/1158742568454370099200000)*n^11 - (7157215149697402554044186072517719/477981309487427665920000000)*n^10 + (552107030494681804261361610031/4436844978069504000000)*n^9 - (2415940983456589943036911811427841/2908351883124559872000000)*n^8 + (103326033975482855639269665005533/23082157802575872000000)*n^7 - (7877089396965831951756259428407549/399547133702196480000000)*n^6 + (10172973554483534081526630673099/140642547829056000000)*n^5 - (34242481981306851689859252316747/153159734585841984000)*n^4 + (27230471296744908127446139183/47668762709568000)*n^3 - (2769560342993078431580752847/2411812398996000)*n^2 + (18165979496961348183233/10782822050)*n - 1410583198450 for n>15
%e A223809 Some solutions for n=3
%e A223809 ..0..0..0..0..0....0..0..0..1..0....0..0..0..0..3....0..0..2..2..1
%e A223809 ..0..2..1..1..1....0..0..3..3..0....0..0..0..3..2....0..0..3..2..1
%e A223809 ..0..0..0..1..0....0..2..2..2..2....0..0..3..2..1....0..0..2..2..2
%K A223809 nonn
%O A223809 1,1
%A A223809 _R. H. Hardin_ Mar 27 2013