cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223830 Number of nX7 0..2 arrays with rows and columns unimodal.

This page as a plain text file.
%I A223830 #6 Jul 23 2025 04:34:50
%S A223830 239,57121,5995781,320423509,10278415020,222531132820,3529435151262,
%T A223830 43488595659874,434747752662172,3644070166673656,26274461520805174,
%U A223830 166299611386240948,939231697288055902,4797427977710396544
%N A223830 Number of nX7 0..2 arrays with rows and columns unimodal.
%C A223830 Column 7 of A223831
%H A223830 R. H. Hardin, <a href="/A223830/b223830.txt">Table of n, a(n) for n = 1..56</a>
%F A223830 Empirical: a(n) = (1296893401129/16938241367317436694528000000)*n^28 + (72703874510633/10888869450418352160768000000)*n^27 + (2880100345513/9489210850037779660800000)*n^26 + (861351630970627/93067260259985915904000000)*n^25 + (864800892388079/4136322678221596262400000)*n^24 + (2565528977681/696064173067468800000)*n^23 + (7905645181522433/151065697813310472192000)*n^22 + (12259447555207963/20064806380162252800000)*n^21 + (7483863495580993/1257623191919001600000)*n^20 + (3594050229364987331/73570956727261593600000)*n^19 + (49600789259036297/145619527485358080000)*n^18 + (86423411955717683177/42593711789467238400000)*n^17 + (1576780142566456509281/152001089131039948800000)*n^16 + (4463809610643909458677/97714985869954252800000)*n^15 + (251513003138559503557/1447629420295618560000)*n^14 + (130199265024314377939/227773859836723200000)*n^13 + (3852138142774912177207/2366317321637068800000)*n^12 + (298748214070779120271/74464531100467200000)*n^11 + (6476410200562687124239/757348083957104640000)*n^10 + (651582375522581245546751/41383663159084646400000)*n^9 + (81109174434756457340257/3242309791666176000000)*n^8 + (42338611909424523333083/1239706685048832000000)*n^7 + (8270024422491842435867/207147570023116800000)*n^6 + (132002526325134509056651/3366148012875648000000)*n^5 + (2188638685226111310011/68070993149263104000)*n^4 + (249241188258236233/11839806322344000)*n^3 + (742497212342827/64314997306560)*n^2 + (84445539769/20078358300)*n + 1
%e A223830 Some solutions for n=3
%e A223830 ..0..0..0..1..2..1..0....0..0..0..1..1..1..0....0..0..0..0..0..0..2
%e A223830 ..0..0..0..1..2..2..0....0..0..0..2..2..1..1....0..0..0..0..1..1..1
%e A223830 ..0..0..1..2..2..0..0....0..0..1..1..2..1..0....0..0..0..0..1..1..1
%K A223830 nonn
%O A223830 1,1
%A A223830 _R. H. Hardin_ Mar 27 2013