cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223847 Number of nX5 0..3 arrays with rows and columns unimodal.

This page as a plain text file.
%I A223847 #6 Jul 23 2025 04:35:23
%S A223847 296,87616,10804883,664770145,24291817048,594861333098,10609537390768,
%T A223847 146233793223364,1627190607796056,15110227641526318,
%U A223847 120160497384066604,835281313593693456,5160709016280272028,28729755606226120468
%N A223847 Number of nX5 0..3 arrays with rows and columns unimodal.
%C A223847 Column 5 of A223850
%H A223847 R. H. Hardin, <a href="/A223847/b223847.txt">Table of n, a(n) for n = 1..81</a>
%F A223847 Empirical: a(n) = (12185409283/15043832793341144432640000000)*n^30 + (76296730104643/884176199373970195454361600000)*n^29 + (1070597323435537/228666258458785395376128000000)*n^28 + (15095976776879/89620324694801252352000000)*n^27 + (80978639299446029/18148115750697253601280000000)*n^26 + (17128733527118137/186134520519971831808000000)*n^25 + (1793728053298859387/1172647479275822540390400000)*n^24 + (1261636802562641833/60135768167990899507200000)*n^23 + (5594512626040336997/23174851369087401984000000)*n^22 + (31544771499812381/13376537586774835200000)*n^21 + (47886425657641284787/2427841571999632588800000)*n^20 + (229975881467092172089/1618561047999755059200000)*n^19 + (9082589031754852696739/10260073516345196544000000)*n^18 + (111240879091929267206971/23256166637049112166400000)*n^17 + (46080377535895002055433/2052014703269039308800000)*n^16 + (5972995162066161572851/65143323913302835200000)*n^15 + (2705387734319931209037779/8305773798946111488000000)*n^14 + (21438489128749966497727/21296855894733619200000)*n^13 + (123748166982394715917397/45739838228461977600000)*n^12 + (281638905229159746619297/44567021863629619200000)*n^11 + (1531541445561308485678126639/119495327371856916480000000)*n^10 + (569764139394721423500017/25290016374996172800000)*n^9 + (12437437033053107961181039/363543985390569984000000)*n^8 + (1801415998853685830112073/40393776154507776000000)*n^7 + (909519212873314420568666851/18379168150301038080000000)*n^6 + (1564096450989494220884147/34035496574631552000000)*n^5 + (108960453802905313513657/3063194691716839680000)*n^4 + (2031598190834852737/90040996229184000)*n^3 + (318817655518333/25794785016000)*n^2 + (1721120935577/388181593800)*n + 1
%e A223847 Some solutions for n=3
%e A223847 ..0..0..0..1..2....0..0..1..2..2....0..0..1..3..1....0..0..0..1..1
%e A223847 ..0..0..1..1..3....0..0..2..3..3....0..0..2..3..1....0..0..3..3..0
%e A223847 ..0..0..0..0..3....0..0..1..3..0....0..2..2..3..1....0..2..3..1..0
%K A223847 nonn
%O A223847 1,1
%A A223847 _R. H. Hardin_ Mar 27 2013