A223862 Number of nX6 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.
610, 52591, 1477240, 22852913, 243933798, 1989679315, 13140481520, 73068868012, 352040804450, 1502130487437, 5774921786002, 20281095690376, 65798275499953, 199037907806762, 565735226772194, 1520829902726663, 3888227083552907
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..1..2..0..0....0..0..1..2..3..2....0..0..2..1..0..0....0..2..2..2..2..0 ..0..2..2..2..2..0....0..0..2..3..3..2....0..0..2..2..2..0....0..2..3..3..2..1 ..0..2..3..3..3..2....0..0..2..3..3..2....0..0..3..3..3..3....0..2..3..3..3..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (42587101/1600593426432000)*n^18 + (42587101/44460928512000)*n^17 + (315292339/15692092416000)*n^16 + (41939983/145297152000)*n^15 + (4407829651/1426553856000)*n^14 + (41324477/1596672000)*n^13 + (19314677849/113164128000)*n^12 + (2898049019/3143448000)*n^11 + (876424981241/219469824000)*n^10 + (28801840747/2032128000)*n^9 + (50450804070829/1207084032000)*n^8 + (17909311831/177408000)*n^7 + (265168304450783/1471133664000)*n^6 + (27553165793177/163459296000)*n^5 - (2984221796923/29719872000)*n^4 - (816413565637/1009008000)*n^3 - (1198736836439/7718911200)*n^2 + (2348655877/471240)*n - 5035 for n>4
Comments