cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223863 Number of nX7 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

This page as a plain text file.
%I A223863 #6 Jul 23 2025 04:36:08
%S A223863 1163,165212,6818350,144081276,2030417942,21476594002,181330154458,
%T A223863 1271807435844,7630189031428,40055722078772,187351337881293,
%U A223863 792277748611083,3065939800657297,10966696897925829,36566451416331144
%N A223863 Number of nX7 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.
%C A223863 Column 7 of A223864
%H A223863 R. H. Hardin, <a href="/A223863/b223863.txt">Table of n, a(n) for n = 1..210</a>
%F A223863 Empirical: a(n) = (3642102403/12772735542927360000)*n^21 + (3642102403/304112751022080000)*n^20 + (5501403851/18246765061324800)*n^19 + (1301866883/246245142528000)*n^18 + (321344829121/4573124075520000)*n^17 + (9671690543/13076743680000)*n^16 + (48483224873/7604629401600)*n^15 + (4261834903427/94152554496000)*n^14 + (1535291055316393/5649153269760000)*n^13 + (98414490687917/72425041920000)*n^12 + (170390859823/29561241600)*n^11 + (33527325663863/1609445376000)*n^10 + (2567156664752496221/39544072888320000)*n^9 + (78187026472193263/470762772480000)*n^8 + (8882688677555591/28245766348800)*n^7 + (112344931028903/452656512000)*n^6 - (18857407511117083/95273418240000)*n^5 - (193916745450429061/55576160640000)*n^4 - (232978788696097/75811583232)*n^3 + (3865849954293617/293318625600)*n^2 + (834897119951/9699690)*n - 164695 for n>6
%e A223863 Some solutions for n=3
%e A223863 ..0..0..0..0..0..0..0....0..0..0..2..2..2..0....0..0..0..0..1..1..1
%e A223863 ..0..0..0..0..0..0..1....0..0..0..2..3..3..2....0..0..0..2..2..1..1
%e A223863 ..0..0..0..0..0..2..1....0..0..1..2..3..3..3....0..0..3..3..3..3..3
%K A223863 nonn
%O A223863 1,1
%A A223863 _R. H. Hardin_ Mar 28 2013