cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223867 Number of 4Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

This page as a plain text file.
%I A223867 #6 Jul 23 2025 04:36:35
%S A223867 35,1225,24199,315124,3017129,22852913,144081276,784071455,3781718633,
%T A223867 16487698435,65952999251,244841613810,851144356707,2790551617469,
%U A223867 8678912669190,25728520577688,72995578880032,198891717017532
%N A223867 Number of 4Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.
%C A223867 Row 4 of A223864
%H A223867 R. H. Hardin, <a href="/A223867/b223867.txt">Table of n, a(n) for n = 1..210</a>
%F A223867 Empirical: a(n) = (1/2906843957821440000)*n^24 + (1/34605285212160000)*n^23 + (2197/1372406261022720000)*n^22 + (37133/608225502044160000)*n^21 + (45197/25276903981056000)*n^20 + (14623277/347557429739520000)*n^19 + (26489599/32011868528640000)*n^18 + (37041601/2667655710720000)*n^17 + (14981899/74392141824000)*n^16 + (19115865583/7532204359680000)*n^15 + (31834111187/1158800670720000)*n^14 + (66986419663/269007298560000)*n^13 + (122476645127999/66283398365184000)*n^12 + (27904576042121/2510734786560000)*n^11 + (949107163427/17557585920000)*n^10 + (100270802691019/470762772480000)*n^9 + (174267558093661/256094948229120)*n^8 + (2011492987640933/1143281018880000)*n^7 + (61760354830949111/16895152834560000)*n^6 + (4216963085471057/703964701440000)*n^5 + (5310598072571189/703964701440000)*n^4 + (2777655817513/391091500800)*n^3 + (19272574007557/3805621142400)*n^2 + (2059892117/1070845776)*n + 1
%e A223867 Some solutions for n=3
%e A223867 ..2..1..1....3..3..0....0..0..2....0..2..1....0..2..0....1..1..0....0..0..0
%e A223867 ..2..3..1....3..3..1....0..3..2....2..3..1....1..2..0....2..1..0....0..1..0
%e A223867 ..2..3..1....3..3..1....0..3..2....2..3..1....2..3..0....2..2..1....0..3..3
%e A223867 ..2..3..2....3..3..3....1..3..3....3..3..3....3..3..3....2..3..2....0..3..3
%K A223867 nonn
%O A223867 1,1
%A A223867 _R. H. Hardin_ Mar 28 2013