cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223869 Number of 6Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.

This page as a plain text file.
%I A223869 #6 Jul 23 2025 04:36:48
%S A223869 84,7056,303560,8008548,145947740,1989679315,21476594002,191485393983,
%T A223869 1457018264594,9708014658466,57822416245144,313064200874351,
%U A223869 1561981122439360,7262269235529104,31752205659432881,131516275822916936
%N A223869 Number of 6Xn 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing.
%C A223869 Row 6 of A223864
%H A223869 R. H. Hardin, <a href="/A223869/b223869.txt">Table of n, a(n) for n = 1..210</a>
%F A223869 Empirical: a(n) = (1/48569119454267387884339200000000)*n^36 + (1/385469202017995141939200000000)*n^35 + (509/2294879094136521281765376000000)*n^34 + (45072673/3373472268380686284195102720000000)*n^33 + (98970929/155735580571551568517529600000000)*n^32 + (15657172481/622942322286206274070118400000000)*n^31 + (72553007/84245463642710408822784000000)*n^30 + (9224227575469/353670479749588078181744640000000)*n^29 + (259388109101239/365866013534056632601804800000000)*n^28 + (1069067947427789/60977668922342772100300800000000)*n^27 + (324068662301467/813035585631236961337344000000)*n^26 + (1050857599757983/125082397789421070974976000000)*n^25 + (3359228653373591/20330730290850174074880000000)*n^24 + (59499006518000473/19544124654597042339840000000)*n^23 + (328837729476779/6275036678399050383360000)*n^22 + (15779074497679499/19015262661815304192000000)*n^21 + (2751358950432231398341/235662488588764336619520000000)*n^20 + (50435698940805547445789/353493732883146504929280000000)*n^19 + (441377463056670747803689/296934735621843064140595200000)*n^18 + (1873830568342196532829127/141397493153258601971712000000)*n^17 + (267354503696336902783274977/2651202996623598786969600000000)*n^16 + (436422377507839553846644063/662800749155899696742400000000)*n^15 + (1125875946010062345791103079/304888344611713860501504000000)*n^14 + (2092746936332381279309322059/117264747927582254039040000000)*n^13 + (751942966419486002702371387/10125656687825770291200000000)*n^12 + (1974716117993688153795059/7436126973898022400000000)*n^11 + (1788367830018388939084527979/2198714023642167263232000000)*n^10 + (31107899679091365256605057767/14658093490947781754880000000)*n^9 + (211320747100198509737825012033/45147885997445373542400000000)*n^8 + (552453635986071137589553754293/63959505163047612518400000000)*n^7 + (32067365980652302617534655703/2434949582523040687104000000)*n^6 + (2243604186621342688240182563/137690601392671943616000000)*n^5 + (21949153806567016754942281/1376906013926719436160000)*n^4 + (391289317973804357849579/32783476522064748480000)*n^3 + (3883508589248023/569647119000960)*n^2 + (22960563482143/10314539492400)*n + 1
%e A223869 Some solutions for n=3
%e A223869 ..0..0..0....0..0..0....0..0..0....0..0..0....0..2..1....0..2..3....0..0..0
%e A223869 ..2..0..0....0..2..1....1..2..0....1..2..0....0..2..1....0..2..3....0..0..0
%e A223869 ..2..3..1....2..3..2....1..2..1....2..2..1....0..2..2....0..3..3....1..0..0
%e A223869 ..2..3..1....3..3..2....1..3..1....2..2..1....0..2..2....1..3..3....1..2..0
%e A223869 ..2..3..1....3..3..2....1..3..2....2..2..1....3..2..2....2..3..3....1..2..0
%e A223869 ..3..3..2....3..3..3....2..3..2....3..2..1....3..3..3....2..3..3....3..2..0
%K A223869 nonn
%O A223869 1,1
%A A223869 _R. H. Hardin_ Mar 28 2013