cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223882 Number of n X 2 0..2 arrays with row sums unimodal and column sums inverted unimodal.

Original entry on oeis.org

9, 81, 564, 3298, 17048, 80412, 353485, 1469903, 5845411, 22414731, 83409546, 302722400, 1075880306, 3756503134, 12919764299, 43865509013, 147290172421, 489846413077, 1615582428816, 5289834522606, 17210293320924, 55679866275376
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2013

Keywords

Comments

Column 2 of A223885.

Examples

			Some examples for n=3:
..0..1....0..0....1..1....0..1....0..0....1..2....0..0....0..1....0..2....2..2
..0..2....1..2....2..2....2..0....1..0....2..2....0..0....0..2....2..2....0..2
..2..0....2..2....0..0....1..1....1..2....0..2....0..0....1..1....1..1....0..1
		

Crossrefs

Cf. A223885.

Formula

Empirical: a(n) = 17*a(n-1) - 126*a(n-2) + 534*a(n-3) - 1425*a(n-4) + 2481*a(n-5) - 2816*a(n-6) + 2008*a(n-7) - 816*a(n-8) + 144*a(n-9).
Empirical g.f.: x*(9 - 72*x + 321*x^2 - 890*x^3 + 1617*x^4 - 1936*x^5 + 1480*x^6 - 672*x^7 + 144*x^8) / ((1 - x)^3*(1 - 2*x)^4*(1 - 3*x)^2). - Colin Barker, Aug 24 2018