This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223894 #21 Oct 07 2022 05:49:10 %S A223894 1,2,1,6,3,4,32,12,16,38,320,80,80,190,728,6144,960,640,1140,4368, %T A223894 26704,229376,21504,8960,10640,30576,186928,1866256,16777216,917504, %U A223894 229376,170240,326144,1495424,14930048,251548592,2415919104,75497472,11010048,4902912,5870592,17945088,134370432,2263937328,66296291072 %N A223894 Triangular array read by rows: T(n,k) is the number of connected components with size k summed over all simple labeled graphs on n nodes; n>=1, 1<=k<=n. %H A223894 Alois P. Heinz, <a href="/A223894/b223894.txt">Rows n = 1..45, flattened</a> %F A223894 E.g.f. for column k: A001187(n)*x^n/n!*A(x) where A(x) is the e.g.f. for A006125. %F A223894 Sum_{k=0..n} T(n, k) = A125207(n). %F A223894 T(n, 1) = A123903(n). %F A223894 T(n, 2) = A182166(n). %F A223894 T(n, n) = A001187(n). - _G. C. Greubel_, Oct 03 2022 %e A223894 Triangle T(n,k) begins: %e A223894 1; %e A223894 2, 1; %e A223894 6, 3, 4; %e A223894 32, 12, 16, 38; %e A223894 320, 80, 80, 190, 728; %e A223894 6144, 960, 640, 1140, 4368, 26704; %e A223894 229376, 21504, 8960, 10640, 30576, 186928, 1866256; %e A223894 ... %p A223894 b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)- %p A223894 add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n) %p A223894 end: %p A223894 T:= (n, k)-> binomial(n, k)*b(k)*2^((n-k)*(n-k-1)/2): %p A223894 seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Aug 26 2013 %t A223894 nn = 9; f[list_] := Select[list, # > 0 &]; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g] + 1, {x, 0, nn}], x], 1]; Map[f, Drop[Transpose[Table[Range[0, nn]! CoefficientList[Series[a[[n]] x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1]] // Grid %o A223894 (Magma) %o A223894 function b(n) // b = A001187 %o A223894 if n eq 0 then return 1; %o A223894 else return 2^Binomial(n,2) - (&+[Binomial(n-1,j-1)*2^Binomial(n-j,2)*b(j): j in [0..n-1]]); %o A223894 end if; return b; %o A223894 end function; %o A223894 A223894:= func< n,k | Binomial(n,k)*2^Binomial(n-k,2)*b(k) >; %o A223894 [A223894(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Oct 03 2022 %o A223894 (SageMath) %o A223894 @CachedFunction %o A223894 def b(n): # b = A001187 %o A223894 if (n==0): return 1 %o A223894 else: return 2^binomial(n,2) - sum(binomial(n-1,j-1)*2^binomial(n-j,2)*b(j) for j in range(n)) %o A223894 def A223894(n,k): return binomial(n,k)*2^binomial(n-k,2)*b(k) %o A223894 flatten([[A223894(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Oct 03 2022 %Y A223894 Cf. A001187, A006125, A123903 (column 1), A125207 (row sums), A182166 (column 2). %K A223894 nonn,tabl %O A223894 1,2 %A A223894 _Geoffrey Critzer_, Mar 28 2013